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ABSTRACT

The autocorrelation of time profiles of emission from gamma-ray bursts has previously been proved to
be a valuable diagnostic for the study of the timing behavior of these bursts. In particular, comparative
studies benefited from this diagnostic. However, in these previous studies, the particular shape of the
autocorrelation function has not been addressed in great detail. In the present paper we try to explain
the autocorrelation shape and behavior. We propose an empirical model that aids in the evaluation of
uncertainties in autocorrelation analyses of gamma-ray burst time profiles. Our most important conclu-
sions are that analyses based on the autocorrelation function are not dominated by mathematical
properties not connected with the gamma-ray burst phenomenon, and that the uncertainty in the relative
time stretching between different photon energy ranges found through such an analysis previously from

CGRO BATSE data is less than or equal to 10%.

Subject headings: gamma rays: bursts — methods: numerical

1. INTRODUCTION

Correlation functions are frequently used in the analysis
of the timing behavior of radiation from stars, usually when
the time profile appears to be only noisy to the human eye.
These functions are useful to determine typical timescales
and correlations in the timing behavior between different
times or wavelengths (see, e.g., Sutherland, Weisskopf, &
Kahn 1978; Shibazaki et al. 1988). Not only are they useful
in the case of apparently noisy data, but also when direct,
unbiased investigation of time profiles proves difficult
because interesting features have timescales very near to the
readout resolution. The latter occurs in gamma-ray burst
(GRB) time profiles; a significant amount of the power of
the variability occurs near the readout resolution of the
Burst and Transient Source Experiment (BATSE) of the
Compton Gamma-Ray Observatory (CGRO). For the most
commonly used data format, this resolution is 64 ms.

Here we study the autocorrelation function (ACF) of
GRB time profiles. The ACF is defined as follows (Link,
Epstein, & Priedhorsky 1993; Fenimore et al. 1995): if the
GRB time profile is given by ¢; = m; — b; counts s !, where
background contributions b, have been subtracted from the
raw count rate m;, and a time interval of T is selected
around the largest peak consisting of N time bins each of
duration AT s, indexed between —N/2 and + N/2, the ACF
as a function of time lag j AT is

N/2 CitiC;
A;j= ) 4= for j#0 and A4,=1, (1)
i==nz2 S
where the normalization S is
N/2
S= Y c—m;. ?)
i=—=N/2

The separate j = 0 setting and the —m; term in S normalizes
the ACF so that coherent noise addition at j = 0 is elimi-
nated. Thus, it ensures that the expected ACF is count-rate
independent. We chose a time interval T = N AT of 16 s
(see Fenimore et al. 1995).

! Present address: NASA/GSFC, Code 661, Greenbelt, MD 2077;
jeanz@lheal.gsfc.nasa.gov.

Fenimore et al. (1995), following Link et al. (1993), calcu-
lated the ACF of GRB time profiles as observed with
BATSE with a time resolution of 64 ms as a function of
photon energy, averaged over a class of bright GRBs, and
determined the typical timescales of the four broad BATSE
energy bands using several methods. Irrespective of the
method, the energy dependency of the timescale apparently
follows a power law with an index of about —0.4. One
method involves the calculation of the stretching factor
between ACFs of different energy bands. Obviously, this
procedure assumes that the ACF is self-similar (i.e., the
ACF of a time profile that has been stretched by a factor is
equal to the ACF stretched by the same factor). Another
method involves the calculation of the full widths at e %3 of
the maximum level. For example, the ACF of channel 1 has
a width of 4.3 s. Norris et al. (1995) determined the average
shape of single-peak features that can be discerned in time
profiles of the same set of GRB BATSE data and found a
width for channel 1 of about 0.5 s. This is roughly a factor of
8 smaller than the quoted value for the ACF. However, the
energy dependency for the width of the average pulse
follows the same power law as the ACF does.

In the present study we try to answer the following ques-
tions about the ACF:

1. How accurate is the assumption that GRB time profile
ACFs are self-similar?

2. Why is the average ACF so smooth in contrast to
ACFs of individual bursts?

3. Why is the typical timescale of the ACF so much
larger than expected from time profile studies by Norris et
al. (1995), and are these results inconsistent ?

4. How valid is the ACF as a tool to determine time
stretching, and are there any systematic effects that might
mimic time stretching?

5. What is the uncertainty in stretching factors as found
from ACFs?

Many GRB time profiles (see, e.g., Fishman et al. 1994)
seem to consist of a sequence of shots with a wide range of
timescales and shapes. This description is very suggestive of
shot noise, as is the exponential behavior of the ACF
(Fenimore et al. 1995). Therefore, we use shot noise as a
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base to explain the ACF. In § 2, a general but brief dis-
cussion about shot-noise signals and their ACFs is present-
ed. From this, we can understand some of the behavior
observed in GRB time profile ACFs. In § 3, a lognormal
shot model motivated by the findings of Norris et al. (1996)
is introduced in an attempt to complete the explanation of

& the shape of the GRB time profile ACFs and obtain a

method to estimate uncertainties of ACF analyses pre-
viously performed. In the conclusion (§ 4), we summarize
the answers to the questions posed above.

2. SHOT NOISE

2.1. The Shot-Noise Signal

In general, a shot-noise signal is defined by a sum of
shots:

10 = 3 6Pl — i ] o)

where F is a normalized function of time ¢ (the “shot”),
specified by a number of parameters ¢, (k between 1 and the
number of parameters), values of which are a function of i.
The linear combination of many such shots with starting
times ¢; and amplitudes a; defines a shot-noise signal if the
starting points ¢; follow the Poisson distribution for a
certain average rate of A shots per second.

Often, shot-noise models are simplified by assuming that
the amplitudes a; or the shot parameter values ¢, are inde-
pendent of the shot index i. The first assumption helps in
dealing with the strong dependence between the amplitude
distribution and A (see § 2.2).

As the term suggests, the shots are often fast-rising func-
tions. Examples of the shot function F are the block func-
tion

1 for0<t<1g
F(t; 1) =
(& =) {0 otherwise ; @
the exponential function
0 fort <0
F(ts 1F) - {e—t/tly fOI‘ t> 0 ’ (5)
and the two-sided exponential function
e fort<0
Fits 2, 7 = {e"/"’ fort>0. ©)

More complex shot-noise signals involve values for g;
and ¢,(i), which are sampled from distributions or follow a
certain time-dependent function.

Norris et al. (1994, 1995) investigated GRB time profiles
by searching for structure in the time profiles themselves.
They found that many time profiles can be described as a
sum of “ pulses,” where the pulses are given by

e U™ fort <0

F(t; T Tg» V) = {e—(m/”)v fort>0 ) (7)

which is identical to equation (6) except for the
“peakedness ” parameter v. The parameters 7,, t,, and v are
free parameters found by optimizing a goodness of fit.

2.2. The ACF of Shot Noise

Rice (1954) derives a general expression for the expected
autocorrelation function of shot noise, assuming equally

sized shots (a; = 1 for all i) and an infinite time series:
© o 2
A7) = AJ F(t; c)F(t + 7; cp)dt + I:Af F(t; ck)dt:l ,
©®)

where 7 is the time lag. If we sample any arbitrary time
interval of length T out of this infinite series and normalize
the ACF so it conforms to equation (1), the resulting ACF
averaged over many samples is expected to be

. ) lzl
AN(‘E)———J(T=O)<1 T). )

For the three simple shot-noise models above (egs. [4]-[6])
andifr,, = A~ ! (average wait time between two subsequent
shots) this becomes

1. If the shots are modeled by equation (4),

Ap(r) = [a(l - m) +1- a):l(l — m) , (10)
Tp T

with o = 7,./(z,, + T5).
2. If the shots are modeled by equation (5),
I7]

Ap(x) = [oe™l*lr + (1 — oz)](l — T) , (11)

witha = 7,./(t,, + 275).
3. If the shots are modeled by equation (6),

—ltl/ta __ =lzl/er
Ap() = [a L A - oc)](l — ﬂ) .
T T

Tq r
(12)
witha = 1,/[7,, + 2(t, + 7,)].

Each of these expressions contains three items: a term
based on the shot function, a constant term 1 — «, and a
triangular envelope factor 1 —|z|/T. The constant term
can be imagined as a background level that is caused by
overlapping shots. This background can dominate the sig-
nature of all shots in the ACF if there is extensive overlap,
indicated by a small value for a (which is a monotonic
function of the ratio between wait time and shot width).

We were unsuccessful in deriving analytical expressions
for the ACFs of more complicated shot-noise signals (like
ones that mimic GRB time profiles, as described by eq. [7]).
Therefore, these were calculated numerically instead by
averaging the ACFs over a sufficient number of realizations
of all parameters. It can be expected that the response of the
ACF to the limited time interval T and to the overlap
between shots will be similar to the ACF for the simple
examples above, while the exact dependence of parameters
might differ.

To some extent, the ACF averages the time profile.
Therefore, not surprisingly, the ACF prohibits a detailed
simultaneous analysis of many parameters. To determine
meaningful values for a few parameters, it often makes sense
to adopt values for the other ones from an independent
source.

Sometimes, there is a strong dependency between differ-
ent parameters in the ACF. A good example of this is the
following. The ACF of a shot-noise signal consisting of a
sequence of single-sided exponential shots, with a mean
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wait time of 7, and an exponential distribution for the
amplitude, is identical to the ACF of a sequence of such
shots with a mean wait time of 27,, and a constant ampli-
tude. This equivalence may be readily derived from an
equation similar to equation (8), but which includes a dis-
tribution for the amplitude,

Ar) = [Jw p(a)azda])hj‘oo F(t; ¢)F(t + t; ¢ )dt
a=0 ©

N { I * a[ I * p)p(a/x) dx] p a}
a=0 x=0 X
X I:AJ‘OO F(t; c,,)dt:l2 ,

where a is the amplitude and p(a) is the probability for an
amplitude between a and a + da. For an exponential ampli-
tude distribution and a shot function according to equation
(5), working out equation (9) with equation (13) substituted
reveals

(13)

Ap(1) = [ae” """ + (1 — )1 —|21/T),  (14)

with « = 1,,/(t,, + 75). Equation (14) is identical to equation
(11) except for an increase in 7,, by a factor of 2.

To obtain a sense of what characteristics of the GRB time
profile are important to the ACF, we performed a number
of simulations. Typically, 1000 simulations were performed
for one set of parameter distributions to obtain a well-
defined average of the ACF. One set of the simulations
involved changing the distributions of ¢, while preserving
the average values; we find that does not change the ACF
drastically. However, changing the distribution for the wait
times from a Poissonian one-to-one with a lower cutoff
strongly affects the ACF. The reason for this sensitivity is
clear from the implications for the time profiles. If a dis-
tribution has a cutoff at small wait times, the probability for
two or more shots being right on top of each other is less
than in the Poisson case, particularly if the cutoff is at a wait
time larger than the mean shot width. If this cutoff is large,
while the mean wait time stays the same, the background
level introduced by overlap of shots is smaller, and, thus, the
ACEF signal of the shots will be stronger.

In Figure 1, three examples of ACFs are plotted, two of
which are for shot-noise signals. From these examples a few
characteristics of the ACF are immediately obvious. First,
the ACF of a shot-noise signal is broader than that of a
single shot with a width equal to that of the average shot in
the shot-noise signal. This is mainly owing to the statistics
of many shots; for relatively small wait times these tend to
cluster and thus can be thought of as combined shots that
are wider. Second, the ACF is not a self-similar function in
the sense that stretching the shots with a constant factor
implies that the ACF is stretched by the same factor for
every time lag. This is also mathematically clear in the case
of classical shot noise from equation (8), where the second
term (representing overlap of shots and having no depen-
dence on lag) makes the ACF non-self-similar. Therefore,
even if the ACF of a single shot is self-similar, the ACF of a
series of shots is not. However, ACFs are approximately
self-similar up to a certain lag, the value of which is larger
when the overlap between shots is smaller (i.e., when o is
larger). Third, different models of time profiles can result in
very similar normalized ACFs. Thus, the ACF is not a very
sensitive tool to discriminate between different models of
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Fic. 1.—Examples of ACFs of shot noise with a single-sided exponen-
tial shot of decay time 1 s (solid curve) and 2 s (dotted curve). In both cases,
the average wait time is 1 s with a Poisson distribution. The dashed curve is
for the same signal as the solid curve except for a lognormal distribution
for the wait times with a logarithmic standard deviation of 0.2. Apparently,
the ACF of shot noise is not self-similar, and observed ACFs can easily be
modeled by different models.

time profiles. Conversely, our use of a simple model to
mimic GRB time profiles is justified.

3. A LOGNORMAL SHOT MODEL FOR THE ACFS OF BATSE
GRB TIME PROFILES

We have constructed a model for the time profiles of
GRBs that is motivated by the results obtained by Norris et
al. (1996), from an analysis of pulses? in a set of GRB time
profiles observed with BATSE. The purpose of this model is
twofold: first, to check whether the ACFs are consistent
with the results by Norris et al. regarding the widths of the
shots, and, second, to determine statistical uncertainties of
the ACF analysis performed by Fenimore et al. (1995).

3.1. Model Description

The model is derived from the shot-noise model.
However, the key difference from shot noise is an asym-
metrical lognormal (see below for an explanation) instead of
exponential (or Poissonian) distribution of wait times
between shots. We will refer to this model as the lognormal
shot model. The shots are described by equation (7), except
that they will be parameterized by the full width at half-
maximum (FWHM), f, and the rise-to-decay ratio instead of

2 Here we stress the difference between shots and pulses: shots are the
features that are part of shot-noise or lognormal shot models, pulses are
the features observed in gamma-ray time profiles. We purely compare
statistical properties of these.
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7, and 7,. Because of the relationship 7, = 0.33t-®2 as found
by Norris et al. (1996), the rise-to-decay ratio is a function of
+ fand will not be a free parameter of our lognormal shot
+ model (we note that the ACF is only marginally sensitive to
the relation between 7, and t,). The FWHM f, the peaked-
ness v, and the shot amplitude a are sampled from lognor-
mal distributions.

A lognormal distribution is defined by a Gaussian func-
tion in the logarithmic domain and is described by two
parameters: the average of the logarithms of the parameter
values (log;, p) and the standard deviation 6. We note that
the relationship between logarithmic and linear average {p)
is given by

<p> = 10<log10 P x 10«1%0/2 logioe , (15)

where o, is the standard deviation in log,, a. In an asym-
metric lognormal distribution, the left- and right-sided
branches of the Gaussian function have different standard
deviations.

The lognormal shot model has eight parameters: {f), a ,
<Tw>a o-logm Tw (left)’ o'loglo Tw (right)’ <V>, aloglo v and aa/a' The
absolute values of the amplitudes are not relevant if one
analyzes normalized ACFs. For four BATSE energy chan-
nels, the total number of parameters increases to 11 if only f
is dependent on energy. We assume here that there is a
one-to-one mapping of shots between different energy
bands and that wait times are identical in all bands, and we
notice that when one compares ACFs from different groups
of bursts, this assumption might not apply (for instance, in a
cosmological scenario for GRBs, the average wait time
might be a function of brightness because of the presence of
time dilation due to the expansion of the universe). The
photon energy ranges for the four BATSE channels are as
follows: 25-57 keV (channel 1), 57-115 keV (channel 2),
115-320 keV (channel 3), and 320-1000 keV (channel 4).

3.2. The Average Shot FWHM As Found from the ACF

We are interested in the widths of the average shots that
result from applying the lognormal shot model, in order to
check whether these are consistent with the widths of the
average separable pulses found by Norris et al. (1996). The
values for the other parameters were adopted from the dis-
tributions published in Norris et al. The values of the fixed
parameters thus obtained are o, =0.26, {1,> =06 s,
Ologioy (left) = 0.3, G104, ., (right) = 0.6, 7y, , = 0.13, and
g,/a =0 (the shot amplitude is assumed constant) We
found that we needed to treat the peakedness {v) also as a
free parameter in order to get good fits between model and
observed ACFs. The best value for <v) is 0.8. The best-fit
values for the FWHMs are {f»; = 0.60 (0.66), { f >, = 0.46
(0.49), (f>3=0.33 (0.39), and {f>, =022 s (0.26) (the
values found by Norris et al. 1996 are given in parentheses).
Figure 2 presents a graphical comparison between fits and
data. This result shows that the observed ACFs are indeed
consistent with the results on pulses in GRB time profiles as
found by Norris et al.

3.3. Uncertainties in ACF Analysis

There are two sources of uncertainty in the ACF analysis.
First, there is that uncertainty due to photon counting sta-
tistics. In Figure 3, we show the spread that is expected in
the ACF due to photon counting statistics. This is a simu-
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FiG. 2—Fits of the lognormal shot model (solid lines) to BATSE ACFs
(dashed lines), for four energy channels (the width decreases with the
energy) and for the first 2.5 s of lag. The model is a satisfactory representa-
tion of the ACF of GRB time profiles and is in agreement with findings by
Norris et al. (1995).
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F16. 3—Expected spread in the BATSE ACFs as a result of photon
count statistics for the lognormal shot model for energy channels 1 (upper
set of solid curves), 2 (dashed), 3 (dotted), and 4 (lower solid curves). Channels
2 and 3 have a spread about the thickness of the lines. The Poisson varia-
tions in channels 1 and 4 are small, so that the overall effect of the Poisson
noise is small.
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lated result: we calculated time profiles of a sample of 41
bursts from the above lognormal shot model (with a differ-
ent FWHM for the four BATSE channels), multiplied these
with the average peak count rates in the four BATSE chan-
nels, added average background levels as expected in these
channels, randomly sampled the count rates from a Poisson
distribution, calculated the ACFs and averaged the results
over the 41 bursts, and repeated this procedure 100 times,
changing only the seed value of the random sampling of
count rates. As can be derived from this figure, the accuracy
of the BATSE measurements is quite good in this domain.
The second source of uncertainty is the fact that we only
observed 41 bursts with shots from three very wide distribu-
tions out of the lognormal shot model. Obviously, this
number is quite small, and the resulting spread in the ACF
is expected to be relatively large (see Fig. 4). The spread is
largely due to the wide distribution of wait times. The
spread due to the distribution of FWHMs is at least a factor
of 5 smaller than this. This is an important fact because this
means that for the same 41 BATSE bursts the relative accu-
racies between the four energy bands is quite good (i.e., if we
assume that the sequence of wait times is the same for all
four bands). If S;, is the stretching factor from BATSE
energy channel i to channel 1, the complete result for the
three stretching factors is (combining the factors found by
Fenimore et al. 1995 and the rms values found here) S;;! =
0.78 + 0.02, S5 = 0.54 + 0.02, and S;;! = 0.33 4+ 0.02. The
results for the widths of the ACFs at e %5 times the

TT T T T T T T T[T T 7T TTT

F1G. 4—Expected spread in the BATSE ACFs due to sampling from
the three distributions in the lognormal shot model, for energy channels 2
(dashed curves) and 4 (solid curves). Although the spread is wide, this does
not affect the measurement of the shot width dependence on energy as
much in this model, since the ACFs in all channels either all get narrower
or all get wider. The stretching between ACFs in different channels is
nearly constant (see text).
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maximum are W, =43 +£0.50 s, W, =34+04 s,
W3 = 2.3 £ 0.3s,and W4, = 1.5+ 0.25s.

When one assumes that the ACFs are self-similar, one
will make a systematic error in relating stretching factors to
ratios of shot FWHMs. If one uses the ACF within 2.5 s of
the maximum (as did Fenimore et al. 1995), the lognormal
shot model indicates that, going from BATSE channel 4 to
channel 1, the ACF will be stretched by 10% less than are
the shots. This percentage is lower for stretching between
other channels. The identification of the data with a power-
law model is, therefore, not noticeably affected. This system-
atic error indicates that the power-law index in the shot
width versus photon energy relationship is about 10%
steeper than that in the ACF width versus energy, as report-
ed by Fenimore et al. (1995). The 10% number is not signifi-
cant since it is of the same order as the statistical rms error
for 41 bursts.

4. CONCLUSIONS

We have studied a number of questions with respect to
the average ACF of a set of GRBs observed with BATSE,
and we conclude the following:

1. Although the ACF is formally not a self-similar func-
tion, the systematic error in the stretching factor between
the average ACFs of different energy channels for the bright
BATSE bursts when assuming self-similarity is <10% for
the first 2.5 s lag.

2. The average ACF is smooth because one averages
over many shots within bursts, rather than over a few
GRBs.

3. Although the ACF, at first glance, suggests timescales
much larger than found from analyses of individual shots, a
more detailed look at the ACF shape shows that both diag-
nostics are consistent in terms of average shot widths and
wait times between shots.

4. There are no systematic effects that can mimic time
stretching in an ACF.

5. The rms errors in the stretching factors as determined
by Fenimore et al. (1995) are 0.02, which is equivalent to the
systematic error (point 1 above).

The ACF can teach us similar GRB characteristics as
direct studies of GRB time profiles can. Although an ACF
analysis is much more restrictive, it is less prone to selection
effects and, thus, can be of some supplemental value.

We have used the concept of shot noise in the study of
GRB ACFs, partly because these ACFs are quite suggestive
of shot noise. However, this does not mean the time profiles
actually are shot noise. We needed to incorporate a lognor-
mal distribution for the wait time to obtain a more com-
plete empirical description of time profiles and way of
explaining more than just the ACF. Thus, we left the clas-
sical concept of shot noise. One should be very cautious in
making statements about time profiles from the ACF alone.
A statement from an analysis of several KONUS/Venera
observed GRBs (Belli 1992) in the power spectrum domain
(similar to the ACF domain), saying that their time profile
can be interpreted as a shot-noise process, seems premature.

This work was done under the auspices of the US
Department of Energy and was funded in part by the
Compton Gamma Ray Observatory Guest Investigator
program.
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