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Abstract. We consider issues that concern the mathematical
description of coded aperture patterns. Primarily this involves
the relation between the open fraction of such patterns and the
signal-to-noise ratio of imaged point sources. A refinement of
the corresponding theory is introduced, taking into account the
spatial response of the coded aperture camera. From this we
predict that patterns with an open fraction of less than 0.5 can
enhance the performance of coded aperture cameras to bright
point sources, as opposed to what was previously thought.

As an application of the refined theory, we tested candidate
open fractions in the instrumental configuration of two identical,
wide field, coded aperture X-ray cameras (1.8-30 keV), that will
be part of the X-ray satellite SAX (to be launched in late 1995).
These tests consisted of numerical simulations of several types
of observations, and show that open fractions between 0.25 and
0.33 are to be favored for the SAX cameras. The improvement
in signal-to-noise ratio with respect to the commonly used open
fraction of 0.5 is up to 30%. Whenever telemetry limits the data
coverage, this profit may well be larger.

We also address additional aperture constraints as applied
to the SAX cameras, such as the aperture geometry and pattern.
From this analysis we propose a new type of coded aperture
pattern for the SAX cameras with an open fraction equal to 0.33,
which possesses near-ideal intrinsic mathematical properties.

Key words: instrumentation: detectors — techniques: image pro-
cessing — telescopes — X-rays: general

1. Introduction

Coded aperture cameras (for reviews, see e.g. Skinner 1984;
Caroli et al. 1987) are based on the principle of coding the spa-
tial information contained in the object with a coded aperture.
The coded image, as measured by a position-sensitive detector,
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can be decoded back to the object domain through a computa-
tional cross correlation with a mathematical representation of
the coded aperture (usually this is done after the actual mea-
surement). This two-stepped imaging technique is particularly
suitable at photon energies where conventional imaging with
a lens or mirror is very difficult or impossible. Therefore, the
importance of this imaging technique to high-energy astronomy
(X- and -ray) is evident.

The coded aperture pattern obviously plays a crucial role in
the imaging performance of the camera. Independently, Gunson
& Polychronopulos (1976) and Fenimore & Cannon (1978) pro-
posed aperture patterns which have better characteristics than
the random patterns proposed by e.g. Dicke (1968). These pat-
terns are commonly known as Uniformly Redundant Arrays
(URAs). They are based on cyclic difference sets (Baumert
1971) and are characterized by a two-valued cyclic autocor-
relation function (i.e. a repeated delta-function). This means
that the employment of such patterns in principle results in a
complete suppression of ’false’ peaks.

An important aspect of the aperture patterns is the fraction
t of the number of all pattern elements that are partially or fully
transparent. We will call ¢ the “open fraction’ of the aperture
(the actual fraction of open area may be somewhat smaller than
t because of technical considerations). Gunson & Polychronop-
ulos (1976) showed that the value of ¢t which is optimum with
respect to the signal-to-noise ratio of imaged point sources, top,
depends on the ratio of the point source to background intensity,
and concluded that ¢, = 0.5 if the background level dominates
over the source intensity. However, Fenimore (1978) demon-
strated that ., decreases for faint sources if the total intensity
of all sources increases, though the associated gain in signal-to-
noise ratio is limited to a factor v/2 at most.

In this paper we refine the theory of coded aperture camera
performance as a function of open fraction. We will show ana-
lytically that coded apertures with an open fraction of less than
0.5 can enhance the performance of coded aperture cameras
even for bright point sources, contrary to what was previously
thought.
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Relatively little is known about URA patterns with open
fractions less than 0.5. Recently, Skinner & Grindlay (1993)
investigated URA-like patterns with ¢ = 0.25 for application in
instruments with a very broad passband. These patterns, how-
ever, do not sufficiently meet our needs. We discuss this and
probe the range of low open fractions for patterns which have
mathematical properties that are nearer to the ideal URA ones.

The study described here was performed as part of a pro-
gram to find optimum aperture patterns for two wide field cam-
eras (WFCs) that will form a Dutch contribution to the Italian
X-ray astronomy satellite 'Satellite per Astronomia a raggi X’
(SAX, Scarsi 1993), to be launched in late 1995. Consequently,
we tested our analytical analysis with numerical simulations of
observations with these WFCs and confined the investigation
of low open fractions for URA-like patterns within the limits
imposed by the SAX-WFCs.

Customized coded apertures need to meet a number of other
conditions. These pertain to the geometry and to the perfor-
mance of the instrument when used as a collimator only (i.e.
disregarding the coding by the aperture; in certain situations
this may be worthwhile). We will address such conditions in
the context of the SAX-WFCs.

2. Theoretical analysis of open fraction

Here we extend the theory behind the optimum open fraction
topt, introduced by Gunson & Polychronopulos (1976) and Fen-
imore (1978), taking additionally into account the spatial re-
sponse of the complete coded aperture imaging system as de-
scribed by the point spread function (PSF). We derive a revised
analytical expression for toy. In order to do so, we follow the
process of the reconstruction of a point source and evaluate the
expected value for its signal-to-noise ratio S/N, given the ex-
pected sources of radiation. For this analysis, we disregard any
dependencies on the responses of collimator or support struc-
tures, since we are at this point only interested quantitatively in
relative results. Furthermore, we assume that every subsection
of the pattern has an open fraction equal to ¢. In Sect. 2.1, we de-
scribe the theory for the ideal case. The well-known results are
extended in Sect. 2.2 to include the effect of the spatial response
of the instrument.

2.1. Ideal PSF

The position-sensitive detector is assumed to be exposed to ba-
sically three components of radiation:

1. N point sources of intensity .S; cts per total detector area
(¢ = 1...N) for the duration of the observation.

2. An isotropic diffuse sky background of B cts per detector
area per field of view (FOV).

3. An internal detector background of b cts per detector area
(this includes all counts that have not reached the detector
via the aperture).

Both background components are assumed to have a flat detector
response. The detector data is sampled in bins equal in size to
the aperture elements.
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Assume that one is interested in the reconstruction of the
intensity of one point source, say ¢ = 1. The reconstruction
involves across correlation of the detector data with the digitized
aperture pattern, and may be split in two: one with the *open’
pattern (allocating a 0 to each closed aperture element and a 1 to
each open one), and one with the *closed’ pattern (reversing the
allocation). Thus, by performing the *open’ cross correlation
all counts behind open elements are accumulated, while in the
’closed’ cross correlation all counts behind closed elements are
accumulated, as seen from the sky position to be reconstructed.

Given the sources of radiation, the ’open’ cross correlation
at the position k of the considered point source is expected to
have the value

Chyopen = S1 t+1 {B t+b+ZSit} cts )
i#1
and the ’closed’ correlation

Ck,closed =(1-1) {B t+b+ZS1;t} cts
i#1

To obtain an estimate C, of the intensity S) one needs to nor-

malize the "open’ correlation with the corresponding fraction

t of the aperture and the ’closed’ correlation with 1 — ¢, and
subtract the latter from the former:

2

C, = Ck,open C’Ic,closed
k = —_—
t 1—t

so that Cy, = S is expected.

The variance o, of the Poisson noise at the position of
the considered point source can be extracted from Egs. (1) and
(2) which specify statistically independent measurements of
counts:

cts per detector area,

3

2 _ Ck:,open Ck:,closed
0c, = ) (1 — t)2
_ Si+b B+Z#IS +b
ot 1t )

Thus, the signal-to-noise ratio S/N of the point source is ex-
pected to be

S1

oCy

= 5)
\/_S_lilg B+Z S+b (

S/N =

The optimum value of ¢, o5 (When S/N is maximum), can be
derived from the conditions:

O(S/N)] [aZ(S/N)]

=0 and |——— < 0. (6)
[ 8t t=topt 82t t=top
Working out these conditions yields
T ™
RNV
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with

B+ Zi 4 S;+b
S] +b

(f may be interpreted as a measure of the ratio of background

to source intensity). This result is the same as Fenimore (1978)

obtained, except that now the diffuse sky background term has

been explicitly incorporated.

f= ®)

2.2. Non-ideal PSF

The spatial response of the system is described by the PSF p;,
the fraction of the source intensity which is found in the 5%
reconstruction pixel (see Appendix). It takes into account all
effects which influence the imaging of a point source such as
for instance the detector resolution. These effects may introduce
dependencies on the off-axis angle and spectrum of the point
source. For a detailed description of these issues in the case of
a typical coded aperture X-ray device, see In 't Zand (1992).
Due to the PSF, the *open’ and ’closed’ cross correlations
will change in value. A fraction 1 — pj of the S; ¢ counts is
lost to neighboring detector pixels of which a fraction ¢ again
will correlate with the open pattern. The remainder of the S ¢
counts will contribute to the *closed’ correlation. The PSF has no
impact on the B and b terms since the detector is assumed to have
a flat response to these terms. Regarding the PSFs that apply
to sources ¢ # 1, these are irrelevant in the cross correlation
considered because the probability of contributing to the closed
or open component is the same for every element of those PSFs.
Egs. (1) and (2) become:

Ck,open =Sitpe+S1t(1—pp)t+

+ {B t+b+ZSit} cts ©
i#1
and
Ck:,closed =S1t(l—p)(1—-1t)+
+1—1t) {Bt+b+ZS¢t} cts. (10)
i#1

The cross correlation value at k now is Cy, = S;pi and the
Poisson noise variance in Cy, is

2 Sipk+b Si(L—pp)+ B+, Si+b
o= Ty T -t '

Due to the presence of a PSF, intensities of point sources
cannot simply be determined by evaluating pixel values, as was
done in the above ideal case. Instead, one needs to test the mea-
sured PSF against a model PSF for a set of different intensi-
ties and positions via a least-squares method. The mathematical
framework of this test is elaborated in the Appendix. The re-
sulting 1o error in the intensity is expected to be

1

2
ko
Ck

amn

Obs = (12)
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where o,_is the Poisson variance for reconstruction pixel £ and
the summation is taken over the extent of the PSF. The expected
signal-to-noise ratio of the considered point source over the PSF
is

Si

OPSF

S/N =

where opgr is specified by Egs. (12) and (11) so that

pz
S/IN =58 [Y k
& Siprtd + Sl(l—pk)+B+Z#l Sitb
t -t

(13)

The optimum open fraction is again given by Eq. (7) but now

_ S -3 p/>Xp)+B+ Dip Sith
S1(C P/ pR) +b '
The results for an ideal PSF (Eq. 8) naturally follow from those

for a non-ideal PSF: the ideal PSF is a delta-function which is
represented by p, = 1 and p; = 0 for ¢ # k.

f

(14)

2.3. Discussion

InEq. (14), f dependson S; (i = 1, ..., N). Therefore, no unique
value for ¢ can be defined. Particularly for a wide field camera
circumstances may differ widely from observation to observa-
tion, provided B and b are not generally dominating over .S;. For
example, the SAX-WFCs may observe fields with only a couple
of faint point sources (e.g. the Large Magellanic Cloud field) or
fields with tens of bright point sources (e.g. the galactic center
field), see Sect. 3. However, one can distinguish the following
limiting cases for an ideal PSF (see Fig. 1):

1. If S dominates over Z#l S;, B and b, then f approaches
0 and top approaches 1. This case is trivial: the detector
effectively only measures counts from Sy, the use of a coded
aperture then has no benefit.

2. If b dominates over S; (¢ = 1,..., N) and B, then f ap-
proaches 1 and .y approaches 0.5.

3.IfY s#1 i + B dominates over Sy and b, then f approaches
oo and top approaches 1/+/F.

For a non-ideal PSF, the first conclusion is cancelled, that is
when only one point source illuminates the detector, ¢qy is not
1 but depends on the PSF and will be less than 1. In this limit,
Eq. (14) reduces to

fo Lo Cn/ X
2P/ pk

and top thus becomes smaller, for instance to = 0.5 if
S pi/ > pi = 0.5. In other words, even for very bright point
sources it is better to use a coded pattern which does not have
the maximum open fraction.

How can this result be understood? One may envisage the
image of a PSF-smeared point source as a group of fainter
ideal point sources (say *sub sources’). If the PSF-smeared point
source is dominating in intensity, the sub sources may well not

5)
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Fig. 1. The relation between toy and f

be. This is also clear when comparing Eq. (8) with Eq. (14): a
fraction 1 — 3" p3/ 3° pf of Sy islostto 3-,; S; in the numer-
ator. Now, if every sub source complies to the above case 3, so
will the combination of all these sub sources and as aresult case
1 will break down to case 3 (the extend of this break down is of
course dependent on the PSF and may be intermediate).

As is clear from Eq. (14), PSF dependencies only apply to
bright sources. Hence, a change of the PSF will only affect the
signal-to-noise ratio or Zqp of bright sources. One could con-
sider altering the PSF to obtain another ¢, for bright sources.
This may be accomplished by selection of another spacing of
the pattern grid because the values of py depend on this. For
example, if the spacing is chosen to be larger (thus making
the pattern coarser), the PSF will tend more to an ideal delta
function and Y p3 /> p} will become larger. Thus, for bright
sources, top Will be larger. However, the fact that this will dete-
riorate the angular resolution might be experienced as a strong
disadvantage.

In Sect. 1, ¢ is defined as the fraction of elements that are
partially or fully transparent. In order to improve the mechanical
stability of coded apertures they are often manufactured with a
support grid which has the same spacing as the pattern grid.
As a result, the area of each transparent element is somewhat
smaller, say by a factor of a (@ < 1). It can easily be shown
that a decrease of o in most cases acts counterproductive in the
signal-to-noise ratio: taking account of a converts Eq. (13) to

2
Py
S/N = \/&Sl
/ Xk: Slpk:-b/a + Sl(l_pk)+Bl+zt:i“LSi+b/a

(16)
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Table 1. Characteristics of each SAX-WFC

Detector area (=aperture area) 255 x 255 mm?

Active detector area 530 cm®
Effective area 430t cm? at 6 keV
Distance Aperture-Detector 703 mm

Field of View (FWZR) 40° x 40° (0.47 sr)
Aperture element size ~1x 1 mm?
Angular Resolution (FWHM), on-axis 5’

Active photon energy range 1.8 — 30 keV
Photon energy resolution (FWHM) 18% at 6 keV
Photon detector depth 32 mm

(all radiation coming through the aperture is reduced by a factor
of ). This equation shows that, for all combinations of S;, B
and b, S/N decreases with o!.

3. Simulations of SAX-WFC observations

The theoretical analysis above shows the effect of £ on the signal-
to-noise ratio of point sources. Some simplifications were made
to provide a clear-cut analysis, such as the omission of the col-
limator response and of a locally varying ¢ over the aperture.
However, to be able to perform a more rigorous quantitative
analysis based on realistic conditions of astronomical obser-
vations with a coded aperture camera, simulations are needed.
This was done by employing the wide field X-ray cameras of
the X-ray satellite SAX, with the additional purpose to find an
optimum pattern for these instruments.

3.1. SAX-WFC instrument description

For a recent and general overview of the SAX mission and its
instruments, see Scarsi (1993). Details about the WFCs are re-
viewed by Jager et al. (1989, 1992). Here we summarize the
key characteristics of the WFCs (see Table 1). The scientific
objective of the WFCs is twofold:

— spatially-resolved simultaneous monitoring of compact X-
ray sources in crowded fields with high sensitivity (i.e. mon-
itoring of spectral variability over a large range of time
scales);

—~ monitoring of large regions of the sky to detect the occur-
rence of X-ray transient sources and signal the necessity
for follow-up studies with higher-sensitivity narrow-field
instruments on board of SAX.

Both WECs are identical and of the noncyclic box type (Pon-
man et al. 1987) which has been shown to be more sensitive

! We disregard here the point that py, also changes with o and actu-

ally counteracts a diminishing .5/N because the PSF becomes sharper.
However, in most practical circumstances the PSF is dominated by
several other factors and the sharper PSF does not quite neutralize the
S/N reduction introduced by « alone
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Towards point source

Aperture

Shielding

Detector

Fig. 2. Schematic drawing of a box-type coded aperture camera. The
aperture and detector are equally sized and the aperture pattern is non-
cyclic. An off-axis point source projects part of the aperture onto the
detector

over cyclic types at wide FOVs (Sims et al. 1980), although
its imaging capability is less because of coding errors. How-
ever, in most circumstances coding errors can satisfactorily be
dealt with (see e.g. Hammersley et al. 1992). Figure 2 presents
a schematic drawing of a WFC.

The detectors are multi-wire proportional counters. Since
calibration measurements of the detectors were not yet available
at the time this work was carried out, a model was used which
is based on that of COMIS/TTM (In ’t Zand 1992), a similar
device currently flying on the Mir space station (having a FOV
about one sixth times that of each SAX-WFC). This model is
thought to be a fair representation of the SAX-WFC detectors
since most of the technology is the same as that of COMIS/TTM
(being built at the same laboratory) and the goal specifications
(e.g. spatial and spectral resolution) are equal.

The PSF in the sky image as recorded with a SAX-WFC
is determined by the coded aperture, the detector spatial res-
olution, photon penetration in the detector gas chamber, the
geometry of the internal detector wires, the readout resolution
of photon positions and the spatial response to the cross corre-
lation. Due to the detector resolution and photon penetration,
the PSF depends on the sky source spectrum and off-axis angle.
The maximum extent of the PSF (at high photon energies and
large off-axis angles) is about 1°. For an on-axis source with a
Crab-like spectrum, the factor Y p3/ > p2 =~ 0.4 (Eq. 14) so
that, following Eqs. (7) and (15), top ~ 0.45 for the limiting
case that S; dominates over all other terms in Eq. (14).

669

Table 2. Characteristics of sky fields used for the simulations

Sky field
Target galactic Large Crab
center Magellanic nebula
Cloud (LMC)
Pointing a 265°6108 83°8938  82°8496
(1950.0) 6  -28°9168 -69°2791 2125760
No. of sources 27 6 2
Exposure (s) 10* 10* 10*

The models of both the internal detector background and the
diffuse sky background were also extrapolated from those mea-
sured in flight with COMIS/TTM. The internal detector back-
ground level (1.8-30 keV) is 19.3 ¢ s™! per detector area and
the level of the isotropic diffuse sky background is 276 ¢t ¢ s~!
per detector area. The internal detector background was as-
sumed to have a flat detector response; the sky background was
modulated by the detector entrance window support structure
(i.e. by the field of view as seen from any detector position).
From these values for b and B, top for faint on-axis sources, as
determined by Eq. (7) in a field with only faint sources, is 0.20.

3.2. Outline of simulations and used aperture patterns

The simulations of SAX-WFC observations were performed
within the full active energy band (1.8-30 keV). The point
sources were taken from a database which was constructed out
of measurements with COMIS/TTM (In ’t Zand 1992, chapter
7). This database gives positions, intensities and rough spectral
characteristics of 60 X-ray sources in the same energy band.
The spectrum of each source was modeled by either a power-
law spectrum or a thermal bremsstrahlung spectrum, depending
on the best description of the measured COMIS/TTM spectrum.

Three sky fields were used for the simulations, representing
extremes of typical observational conditions. The characteristics
of these fields are listed in Table 2. The exposure time was taken
to be 10* s (the expected typical continuous exposure time spent
on one sky field with SAX is about 3 x 10* s). The galactic
center field consists of 27 point sources with a wide variety
of intensities, the LMC field contains 6 faint sources and the
Crab field contains 2 bright sources. These particular examples
of "extreme’ fields were chosen because COMIS/TTM data is
available on them.

In the case of the galactic center field we also simulated the
detector response to two components of diffuse galactic emis-
sion: according to the finite disk model by Warwick et al. (1985)
and to the thin hot plasma model of Yamauchi et al. (1990). The
former has an extend of ~ 60° in galactic longitude by ~0°6
in latitude, while the latter is sized 1°0x 1°8, centered on the
galactic center with an inclination to the galactic plane of 21°.

Five values of t were employed for simulations of observa-
tions of these three sky fields: ¢ =0.05, 0.125, 0.25, 0.33 and
0.5. In order to avoid difficulties with respect to bin phases
of the cross correlation and to be independent of the limited
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possibilities of constructing URA-based patterns for arbitrary
open fractions, we used patterns in which the open elements are
randomly distributed. Although the imaging capability of such
patterns is worse than that for patterns based on URAs, this
is of no consequence to our analysis because we assume full
knowledge of the modeled sky source distribution and thus our
analysis is not disturbed by the crosstalk from unforeseen X-ray
sources as is common to these types of patterns. The apertures
consist of 250 x 250 elements each 1.02 x 1.02 mm? in size. We
note that without full knowledge of the sky distribution, URAs
will provide superior performance to that of random patterns
and eventually do need to be employed (see Sect. 5).

3.3. Results

The results for any combination of sky field and open fraction
are given in Table 3. To compare the results for the different
open fractions, we listed the measured signal-to-noise ratios
for all significantly detected sources as well as the averaged
values. Furthermore, for the galactic center field, we averaged
separately two groups of sources: those that have a signal-to-
noise ratio less or more than 50 at ¢ = 0.050.

For the galactic center field, the best average signal-to-noise
ratio, within a 3% margin, is achieved for an open fraction be-
tween 0.125 and 0.333. The two other tested open fractions are
at least 10% worse in average signal-to-noise ratio. The result
differs somewhat between faint and bright sources, the faint
sources having better signal-to-noise ratios at lower open frac-
tions than the bright sources, but this is not very significant
within the above mentioned margin. The same result applies
to the other two fields, preference exists for open fractions only
slightly larger than the galactic center field. Rounding up the re-
sults for all three fields, the conclusion is that ¢, lies between
0.250 and 0.333.

The simulations show that improvements in signal-to-noise
ratios, relative to the conventional choice of ¢ = 0.5, are on av-
erage 20%. This means a considerable benefit in exposure time,
up to 40% on average, to obtain similar signal-to-noise ratios.
Other criteria, originating in data handling issues, may boost the
argument for smaller open fractions even further. For example,
it is evident that lower ¢ values result in less data to be teleme-
tred down to Earth, at no expense of sensitivity. Furthermore, if
it is common that telemetry limits the data coverage for t = 0.5,
resulting in loss of data, the profit in signal-to-noise ratio of
t = top data with respect to ¢ = 0.5 data may even be larger than
already concluded from the above analysis.

4. Additional constraints in the aperture choice

There are a few additional considerations which need to be ad-
dressed before the final choice for an aperture. First, there is
the geometry of the aperture. With respect to geometry, a coded
aperture pattern is defined by the shapes and sizes of the com-
plete aperture plate and those of the pattern elements. The shape
and size of the SAX aperture plates is matched with that of the
square detectors (in order to create a ’box’ type coded aperture

J.IM. in ’t Zand et al.: The optimum open fraction of coded apertures

camera, see Sect. 3.1). The choice for the size of the pattern
elements is motivated by the goal to achieve the best angu-
lar resolution possible within the limits dictated by the spatial
resolution of the detectors (0.5 mm FWHM) and the possibil-
ities of the etching technique used to fabricate the holes in an
aluminium plate. This results in a choice of square aperture el-
ements of about 1 x 1 mm?. This size, combined with the total
aperture size of 255 x 255 mm?, dictates the number of pattern
elements.

The simulations show a favorable ¢ range of 0.25-0.33. This
result is based on the assumption that the sky reconstruction
is performed with a cross correlation algorithm. However, one
might consider reconstruction of the intensity without the use
of the coded aperture pattern, from the count rate versus time
diagram (the ’lightcurve’). This is feasible if an X-ray source
produces a unique feature in this diagram. X-ray burst sources
are strong candidates for such a reconstruction. Hence, this op-
tion clearly matters for SAX, since the study of X-ray bursts is
part of the scientific objective of the WFCs.

The sensitivity to an event in the lightcurve is set by the
noise level of the background, where the background is the count
rate due to all celestial X-ray sources and the internal detector
background. The standard deviation of this background level is
given by:

0BG = (B +>° S¢> t+b  cts per time unit. (17)
i

The ratio V' of the signal-to-noise ratio of the event as seen in
the light curve (say at the peak intensity) to that as seen in a
cross correlation reconstruction is, therefore, given by

t
V = _—
\/ 1-OY 0k

Calculations show that, for the SAX-WFCs, V > 1ift > 0.20.
Therefore, for 0.25 < ¢t < 0.33, the total-detector lightcurve
is more sensitive to clearly recognizable events than the cross
correlation. Furthermore, this advantage increases with ¢ and it
is best to have an open fraction as high as possible from this
viewpoint. Therefore, within the range for ¢ defined above, we
consider ¢ = 0.33 to be the optimum choice.

(18)

5. The aperture pattern

Having narrowed down the open fraction and geometry of the
coded aperture, we need to address the arrangement of open and
closed pattern elements in the aperture. As discussed above (see
Sect. 2) it is very desirable to use uniformly redundant arrays
(URAs). The question now is: given the selected open fraction of
0.33 for the SAX-WFCs, what choice is there in URA patterns
complying to this value?

Recently, Skinner & Grindlay (1993) proposed patterns to
be utilized in instruments covering a very wide photon energy
passband (2 to 3 decades). The best patterns are build out of two
URAs with different spatial scales. As a natural consequence
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Table 3. Signal-to-noise ratios for point sources in simulated SAX observations of three sky fields, the exposure time is 10 s.

a. 24 sources in the galactic center field

Open fraction ¢
Source 0.050 0.125 0.250 0.333 0.500
X1700-377 14.8 23.7 26.7 26.9 242
X1702-429 10.9 13.3 12.5 13.3 11.9
X1702-363 273.0 324.7 336.5 328.5 296.7
X1705-440 66.1 73.3 69.3 68.6 60.5
X1708-407 16.4 17.1 15.9 15.5 16.5
X1724-307 12.7 14.7 12.7 13.9 9.1
X1728-337 53.6 60.1 59.1 57.3 48.5
X1728-247 6.9 10.0 10.2 10.3 7.7
X1728-169 75.6 86.9 86.9 834 74.6
X1731-260 64.4 65.6 62.6 58.7 52.7
X1735-269 14.6 15.6 13.7 13.8 11.0
X1735-444 37.1 41.1 39.8 40.0 32.8
X1742-294 21.8 24.5 21.9 22.1 16.0
X1744-300 234 30.0 279 26.1 22.1
X1744-361 34.4 354 333 31.0 26.9
X1744-265 234.8 263.2 256.1 246.5 216.6
X1746-370 9.5 8.6 8.2 9.1 9.6
X1755-338 349 38.0 31.7 31.0 28.8
X1758-250 417.2 5153 536.4 529.7 471.7
X1758-205 250.0 302.9 310.7 301.6 267.5
X1811-171 82.2 87.2 80.1 79.5 65.4
X1813-140 108.9 122.0 120.2 115.0 101.9
X1820-303 152.9 177.0 1771 170.7 150.5
X1822-371 8.5 10.8 12.4 12.6 9.7
Average 84.4 98.4 98.4 96.0 85.0
Average < 50.0¢=0.05 18.9 21.8 20.5 20.4 17.4
Average > 50.0¢-0.05 161.7 188.9 190.5 185.4 164.8
Total counts 1.6x10° 3.7x10° 73x10° 9.7x10° 1.5x10’

b. The LMC field

Open fraction ¢

Source 0.050 0.125 0.250 0.333 0.500
X0521-720 252 29.7 32.0 30.8 29.0
X0532-664 13.7 23.0 26.4 26.5 25.5
X0538-641 18.1 21.3 22.0 20.0 20.0
X0540-697 277 30.3 30.8 29.0 26.0
Average 212 26.1 27.8 26.6 25.1
Total counts 3.1x10° 55x10° 9.7x10° 12x10° 1.8x10°

c. The Crab nebula field

Open fraction ¢

Source 0.050 0.125 0.250 0.333 0.500
X0531+219 4975 733.9 883.8 912.8 885.1
X0535+262 320.3 493.1 580.4 589.6 554.9
Average 408.9 613.5 732.1 751.2 720.0
Total counts 9.1x10° 2.3x10° 4.8x10° 6.5x10° 9.8x10°
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these patterns have open fractions less than 0.5. In particular,
Skinner & Grindlay investigated performances of ¢t = 0.25 pat-
terns (combining two t =~ 0.5 patterns), with emphasis on the
minimization of false peaks. The performance of these patterns
was found to be better than those of random patterns, although
worse than that of a single URA. Thus, a compromise was es-
tablished between performance and applicability in a wide pho-
ton energy passband. For the relatively narrow passband of the
SAX-WEFCs, there is no need for such a compromise. Also,
we anticipate that the large scale structures in those patterns
will, due to interference with large structures of the detector
(e.g. support structure bars), introduce extra coding problems.
Therefore, we pursue possible solutions of single URAs with
low open fractions and employ the following reasoning.

A URA a; (a; is either 0 or 1) is related to a cyclic differ-
ence set through its indices: all ¢ ( = 0,...,n — 1) for which
a; = 1 need to be a member of a cyclic difference set. a; is
then characterized by inter-element spacings of a; = 1 that are
uniformly covered for all spacings. The cyclic autocorrelation
¢; of the URA is two valued (Baumert 1971):

if mod(l,n)=0

i
a= AiGmod(i+l,n) = § k(k—1) -
e Timedtirhm) = A B2 if mod (1, m) # 0

19)

(i.e. a periodic delta function), where k is the number of mem-
bers of the set (thus, the membership fraction within n is given
by t = k/n, this parameter defines the open fraction of patterns
to be constructed from this array). URAs can be folded in two
dimensions. The folding procedure should follow some rules to
preserve the ideal autocorrelation in two dimensions (see e.g.
Miyamoto 1977 and Proctor et al. 1979). The resulting patterns
are proven to be advantageous against purely random patterns
(see e.g. Gunson & Polychronopulos 1976 and Fenimore &
Cannon 1978), whose cyclic autocorrelations are k-valued. This
advantage is not relevant in the simulations discussed in Sect. 3
because we proceeded from full knowledge of the observed sky.

Fenimore & Cannon (1978) introduced URA patterns from
so-called quadratic residue cyclic difference sets, which are
defined as follows: if there exists an integer u such that n =
4y — 1 is prime, the ¢ for which a; = 1 are given by all values
mod(j2,7) (j = 1,...,n — 1). For such a pattern, k = 2 — 1 so
that for n > 1, t approaches 3.

There is also a class of URA patterns with ¢ ~ 0.25. These
are based on biquadratic residue cyclic difference sets (see
e.g. Baumert 1971) and their definition is analogous to that of
quadratic residue sets: if there exists an odd integer « such that
n = 4u? + 1 is prime, the 4 for which a; = 1 are given by all val-
ues mod(j*,7) (j = 1, ...,n — 1). For such patterns k = & — 1
so that for n >> 1, ¢ approaches 1.

We are interested in URA patterns with an open fraction
of 0.33. Furthermore, we here choose not to be too strict in
the conditions for the pattern since in a practical situation the
geometry of a proportional counter prevents the recording of
the complete pattern at all times anyway. This is even more true
in box-type coded aperture cameras such as the SAX-WEFCs,

J.J.M. in 't Zand et al.: The optimum open fraction of coded apertures

Fig. 3. A picture of the coded aperture pattern chosen for both
SAX-WFCs. White squares represent holes in the pattern

where off-axis sky sources principally project just part of the
pattern on the detector (see Fig. 2).

To our knowledge, there are no genuine URA patterns with
t = 0.33. However, following a routine extrapolated from the
two mentioned above, we have found a pattern type with ¢ ~
0.33 that is very close to a URA-type. Instead of two valued,
the cyclic autocorrelation of the resulting array is four valued.
This pattern is defined as follows: if there is an integer u for
which n = 3u + 1 is prime, the indices 7 of all a; = 1 are given
by all values mod(53,n) (j = 1,...,n — 1). We call this type
of array a ’triadic residue’ array. The zero-shift autocorrelation
value (number of open elements) is . The three non-zero-shift
autocorrelation values, A1, A\, and A3, occur close (within 1% for
u > 1)to %u and Zil A; = u—1.Inorder to size such a pattern
to about 250 x 250, there is ample choice in u: for instance
u = 21840. In this case the array may be folded row wise in a
256 x 256 pattern. The array is just 15 elements too short to fill
the complete pattern. Another, even more favorable choice is
u = 21846. We find this array to have the property A; = Az, so
that the cyclic autocorrelation for this particular case is 3 instead
of 4 valued. The array can be folded row wise also in 2256 x 256
pattern, having only 3 elements short to complete the pattern.
The latter pattern is a very favorable one from our point of view.
Therefore, we consider this pattern to be the best choice for the
apertures of both SAX wide field cameras?. Figure 3 shows a
binary representation of this pattern.

2 No distinction is made here between each camera since no separate

observing programs are foreseen for each camera
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6. Summary

We have shown, both theoretically and through numerical sim-
ulations of observations with the SAX-WEFCs, that there exists
a dependency of the optimum open fraction of a coded aperture
(with respect to the signal-to-noise ratio of point sources) on the
spatial response of the instrument to point sources. As a result,
bright point sources follow faint sources in the tendency to have
higher signal-to-noise ratios at lower aperture open fractions.

A unique optimum value for the open fraction, applicable
to diverse sky fields as observed with one instrument, can in
general not be given. However, for the SAX-WFCs the optimum
is limited to within a certain range where the signal-to-noise
ratio, averaged over the point sources in the field of view, does
not deviate by more than a few percent from the optimum value.
Although profit in signal-to-noise ratios is limited to a factor V2
at most, we stress that this results in a considerable benefit in the
exposure time needed to arrive at similar signal-to-noise ratios
and that telemetry coverage considerations may be at least as
important as signal-to-noise considerations.

In the case of the wide field cameras to be employed in SAX,
simulations show a preferred open fraction between roughly
0.25 and 0.33. Combining this preference with the consideration
of good sensitivity to X-ray bursts in the total count rate of the
detector, the choice has been made for a pattern with ¢ = 0.33
and nearly ideal cyclic cross correlation characteristics. The
chosen pattern is based on a ’triadic’ residue set with u = 21846
which is folded 2-dimensionally row wise and completed to a
256 x 256 pattern with 3 closed pattern elements.
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Appendix A: the point spread function (PSF)

In its continuous form, the PSF is characterized by the normal-
ized function f(x — xo, y — yo) which specifies per unit area the
fraction of the point-source intensity contained in the infinitesi-
mal area ([x — zo]...[z — zo] +dz, [y — yol...[y — yo] +dy), when
the point source is located at position (xo, yo). In this continuous
form the point-source image is given by:

m(z,y) = s f(x — xo,y — Yo)+!  intensity/area (AD)
where s is the total point-source intensity and accounting for a
constant background level [. Actually, the PSF will be integrated
on aregular grid with bin sizes Az x Ay and sampled at (z;, y;),

yielding a reconstructed sky of:

m; = sp;+L  intensity (A2)
where L =1 Az Ay and
zi+iAz  pyi+iAy

pi = / / f(@ — xo,y — yo)dz dy. (A3)
zi—iAz Jy;—iAy
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The point-source intensity and position may be obtained by
applying a least-squares method on the appropriate part of
the reconstructed sky. This involves minimizing the S-statistic
(Lampton et al. 1976)
N
Ci —my)?
S = Z (_’im_’)_ , (A4)
1=1 UC
leaving free simultaneously s, g, yo and L (IV is the number of
pixels in the appropriate part of the sky, C; the observed value
of the reconstructed sky at element ¢ and o, its variance). If

the model m; is consistent with the data C; and the deviations
Q%’-"—L are independent and approximately Gaussian distributed

with a zero mean (see e. g. Bevington 1969), the minimum value
Smin is a sample from the probability distribution of Pearson’s
x2-statistic for N — N,, degrees of freedom (IN,, is the number
of parameters for which a solution is searched and is 4 in this
case). The model is regarded to be discrepant with the data if
the integrated probability

[o¢]

: FOR-n,)ax

a = (AS)
is smaller than a certain threshold value, where f(x%,_p) is
the probability distribution of x2 for N — N,, degrees of free-
dom. Lampton et al. argue that a threshold value of 10% is a
reasonable compromise between security of conclusions and
sensitivity toward detecting false models.

Given a correct model, errors on all parameters with a certain
confidence level P may be determined. The P confidence-level
region in parameter space is conditioned by the contour (Lamp-
ton et al. 1976):

S = Smin+ X, (P) (A6)

with x? distributed for anumber of freedoms equal to the number
of parameters IN,,. For a simultaneous fit of all four parameters,
a confidence level of 68% is equivalent with x3(68%) = 4.7.
Often, so-called ’1-sigma’ errors are quoted, because they are
easier to infer. For a parameter with a fitted 'value of p the 1-
sigma error oy, is defined by:

S(p+0p) = S(p)+1.00 (A7)

For the four parameters considered here, working out Eq. (A7)
(to the second order Taylor expansion) and including Egs. (A2)
and (A4) results in:

1
2
o2 = ~, (A8)
(pi)
L
1
2
e B ““9)
Szz—Téi"
1
ol = -——(—%é—)7 and (A10)
822 O'Zii
1
o = ) (A11)

1
Z;g
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These 1-sigma errors indicate the accuracy of estimating all pa-
rameters separately at a 68 % confidence level, or simultaneously
at a confidence level of 21%.
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