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Chapter 1

Discovery Space

(Reproduced from Harwit, 1984)

1.1 Historical remarks

Traditional astronomy was concerned with studying the light, i.e. optical radiation,from ob-
jects in space. The range of light is in fact surprisingly limited, it includes only radiation with
wavelenghts 30 percent shorter to 30 percent longer than the wavelength to which the human
eye is most sensitive. Present day astronomy covers the full electromagnetic spectrum cov-
ering wavelenghts less than one thousand-millionth as long (gamma-rays), to over a hundred
million times the wavelength of light for the longest radio waves. To make an analog with
sound, traditional astronomy was an effort to understand the symphony of the universe with
ears which could hear only middle C and the two notes immediately adjacent.

The accidental discovery in 1931 by Karl Jansky, a radio engineer at Bell Telephone Laborato-
ry, of radio waves beyond the Earth showed that there was non-optical radiations from space.
The rapid growth of astronomy over the recent decades basically arises from overcoming two
major barriers.

The first is a natural barrier, the earth’s atmosphere, which absorbs most radiations from
space,consequently space-based instruments and platforms are required to cross this barrier.
This ”space age” started in the 1950s and has been absolutely seminal for the development
of modern astrophysics.

The second barrier was technological: new types of telescopes had to be built to gather
other kinds of electromagnetic radiation than optical or radio waves, this also included tech-
niques for collecting cosmic-ray particles and neutrinos. Also, a host of new sensor techniques
to detect and record the images and spectra gathered by these telecopes needed to be devel-
oped, including their suitability to be launched by rockets and carried on satellite platforms
operated in space. As a consequence, many cosmic phenomena have only come to be recog-
nized in the past forty-five years, largely through the introduction into astronomy of radio,
X-ray, infrared, and gamma-ray techniques. None of the new phenomena had been anticipat-
ed before World War II, and it is natural to wonder how many more remain unrecognized
even today, how rich and complex the universe might be. Further, if technological advances
already have helped us uncover so many new cosmic features, how many more innovations of
similar kinds could we put to use in future cosmic searches?

Astronomy is largely an observational science, and for at least the next century our tech-
nology will be insufficiently advanced to permit exploration of the universe beyond the solar
system. Because astronomy is so dependent on observations, it is relatively simple to assess
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Figure 1.1: Observation, experiments, and exploration. Observation is the most passive means
for gathering data. The observer receives and analyzes information transmitted naturally by
the system he is studying. The experimenter, in contrast, stimulates the system under con-
trolled conditions to evoke responses in some observable fashion. Ezploration is an attempt to
gather increasing amounts of information by means of a voyage which brings the experimenter
or observer closer to the system to be studied. Credit Harwit (1984).

the impact that further technological advances are likely to make. In the experimental sci-
ences such an assessment would be far more complex. The experimentalist studies a system
by imposing constraints and observing the system’s response to a controlled stimulus. The
variety of these constraints and of stimuli may be extended at will, and experiments can be-
come arbitrarily complex as indicated in figure 1.1.

Astronomy is different. The observer has only two choices. He can seek to detect and an-
alyze signals incident from the sky, or he may choose to ignore them. But he has no way of
stimulating a cosmic source to alter its emission. He can only observe what is offered. He is
entirely dependent on the carriers of information that transmit to him all he may learn about
the universe.

1.2 Discovery and rediscovery

Though there is no unique definition of a cosmic phenomenon, most astronomers would com-
pile a list much like the one shown in figure 1.2 if asked to name the principal phenomena
characterizing the universe.

The 43 phenomena named are given prominence in most astronomical texts and standard
reference works. Conferences and symposia concern themselves with individual phenomena
on the list, and books or review articles frequently focus on one or another of these entries.
The discovery dates for the phenomena shown in the top curve cannot always be precisely pin-
pointed because the realization of a discovery sometimes dawns slowly. At times a discovery
involves the recognition that a previously known phenomenon actually comprises two quite
distinct sources or classes of events — giant and main sequence stars, novae and supernovae,
galaxies that contain gas — while others do not. Such discoveries are indicated by a slash (/)
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Figure 1.2: Major astronomical discoveries and rediscoveries. Credit Harwit (1984).

in the designation of the two phenomena that become resolved. The lower curve shows phe-
nomena that are redundantly recognized through two totally independent techniques. Thus,
the existence of planets in the solar system would by now have been discovered even if optical
telescopes had never been invented. An astronomer on an ever-cloudy body, such as Venus,
would by now also have discovered the system of planets by virtue of planetary radio emission
alone. One phenomenon, interplanetary matter, is known not only in doubly (D) but in triply
(T) independent ways. We see the faint zodiacal light in the night sky; we observe meteors
and meteorites burning as they enter the atmosphere and can collect meteorites that hit the



ground; finally, we obtain radar reflections from fine dust grains that burn on entering the
upper atmosphere.

The most striking aspect of the two curves is the increasingly accelerated rate of discovery
shown by the rapid rise in the top curve. Simultaneously with this rise comes an increasing
recognition of previously known phenomena, now rediscovered by means of radio telescopes.

1.3 The search

The search for cosmic phenomena is one of mankind’s greatest adventures and one of the most
ambitious enterprises of modern science. To understand its conduct we will need to discern the
nature of the phenomena, identify the people caught up in the search, describe the skills these
scientists possess, analyze the plans they follow to their goals, and identify the tools required
for their quest. We will need to know how the most significant discoveries are being made,
whether past successes can guide us to further discoveries, whether there are ways to gauge
the future scope of the search — of deciding whether our inventory of cosmic phenomena is
nearly complete, whether we are close to being the last generation of astronomers needed to
unravel the complexities of the universe, or whether there will be an endless cadre of cosmic
researchers stretching into an uncertain future. There is only one way to approach this study:
we must look at the conduct of past searches in order to discern trends that can lead to
assessments of the future. Seven traits common to many discoveries are these:

1. The most important observational discoveries result from substantial tech-
nological innovation in observational astronomy.
Galileo’s spyglass enabled him to resolve features on the moon considerably finer than
any that can be distinguished with the unaided eye. He could also see stars several
magnitudes fainter. Viktor Hess’s discovery of cosmic rays led to an increasing aware-
ness that electromagnetic radiation is not the only carrier of astronomical information
reaching Earth; there also exist energetic subatomic particles that inform us about catas-
trophic events far away in the cosmos. Karl Jansky looked out into the universe and saw
signals from our galaxy at wavelengths 20 million times longer than anything the eye
can see; the scientists at the Naval Research Laboratory and at the American Science
and Engineering Corporation were able to detect signals at wavelengths 1,000 times
shorter than visible light, and these techniques led to the discovery of X-ray stars and
galaxies. The Vela military satellites could detect brief bursts of gamma-rays and found
just such bursts arriving from unknown parts in the sky; and short pulses detected at
radio wavelengths similarly had led Anthony Hewish and Jocelyn Bell to the discovery
of pulsars in 1968. Technological innovations that led to discovery have usually involved
completely new wavelength ranges never used in astronomy before, or have made use
of instruments with unprecedented precision for resolving sources to exhibit structural
features, time variations or spectral features never seen before.

2. Once a powerful new technique is applied in astronomy, the most profound
discoveries follow with little delay.
Many discoveries are made within weeks or months of the introduction of new observing
equipment. In the past twenty-five years there have been no discoveries that could
have been made with instruments available a quarter-century earlier. Occasionally a
discovery is verified by an observer who can point to records he had obtained some two
or three years before; on these the new phenomenon may already be discerned, though
not perhaps convincingly enough to stand out.

10



3. A novel instrument soon exhausts its capacity for discovery.

This corollary to the speed with which new discoveries follow technical innovations does
not imply that new apparatus quickly becomes useless. It just means that the instru-
ment’s function changes. It joins an existing array of tools available to the astronomer
for analytical work, rather than for discovery, and continues useful service in that ca-
pacity. To revitalize a technique for further searches for new phenomena, its sensitivity
or resolving power must be substantially increased, often by as much as several fac-
tors of 10. Thus the discovery of quasars became possible only after radio-astronomical
techniques had advanced to a stage at which sources subtending angles no larger than 1
second of arc could be identified and accurately located in the sky. The radio equipment
available earlier to Jansky could simply not have coped with such observations.

4. New cosmic phenomena frequently are discovered by physicists and engineers
or by other researchers originally trained outside astronomy.
In a wide-ranging study of the emergence of radio astronomy in Great Britain, the
sociologists David Edge and Michael Mulkay have noted that all of the early British radio
astronomers were physicists or electrical engineers and that radio astronomy, worldwide,
was originally staffled largely by workers trained in physics or electrical engineering.
The same trait can be discerned all across modern astronomy. We speak of ”cosmic-
ray physicists”, and, in fact, cosmic-ray research is largely carried out in the physics
departments of universities. Similarly, the early X-ray or gamma-ray astronomers had
been trained as physicists. This trend is not just confined to modern times. We need
only think of the work of Galileo, William Herschel and Joseph Fraunhofer, who brought
new methods and techniques to astronomy after working in other fields. Many of these
pioneers initially worked at what professional astronomers would have considered the
outskirts of astronomy.

5. Many of the discoveries of new phenomena involved use of equipment origi-
nally designed for military use.
The rapid development of radio astronomy after World War II was made possible by
existing radar equipment developed for the war effort. Even before the war’s end, how-
ever, James Stanley Hey, at the time employed by the British radar network, had noted
occasional strong radio emission from the Sun and had discovered radar reflections from
meteor trails. Subsequently both solar radio astronomy and radar meteor observations
developed into subdisciplines with their own practitioners. In 1946, shortly after the
end of the war, Hey and his collaborators, still using war-time equipment available to
them, also discovered a curiously undulating cosmic radio signal that proved to be the
first extragalactic radio source, Cygnus A. In the United States the earliest post-war
solar X-ray and far-ultraviolet observations were carried out with German V-2 rockets.
Advances in infrared astronomy were similarly based on progress in the construction of
military detectors, but the most sensitive far-infrared detectors were not developed until
some time after the war and did not become available for astronomical work until the
late 1950s and early 1960s. This relationship between the tools of surveillance in war
and in astronomy is not new: Galileo had pointed out the military value of the spyglass
to the Venetian senate. His gift of the spyglass so pleased the senators that they at
once doubled his salary and made his professorship at the University of Padua a lifetime
appointment.

6. The instruments used in the discovery of new phenomena often have been
constructed by the observer and used exclusively by him.

11



The instruments used by Galileo, Hess, Jansky, and the early X-ray astronomers were
built by them and were under their sole control. The Los Alamos group that discov-
ered gamma-ray bursts had access to all the data gathered by the passive Vela satellites.
Men like Christian Huygens, James Bradley, William Herschel, Friedrich Wilhelm Bessel,
William Huggins, and William Parsons, third earl of Rosse, responsible for prime discov-
eries in the seventeenth, eighteenth and nineteenth centuries, also had instruments that
they alone might use: When faced with a surprising result, they could check their ap-
paratus at leisure, repeat the observations, and cross-check their results until they were
certain that a finding was genuine and not due to some instrumental artifact. More
than half of the phenomena discovered in historical times were made with instruments
under exclusive control of the astronomers responsible for the discovery.

7. Observational discoveries of new phenomena frequently occur by chance —

they combine a measure of luck with the will to pursue and understand an
unexpected finding.
Before Viktor Hess set out to make his balloon observations, the slow discharge that
always takes place in electroscopes had generally been attributed to radioactivity in the
earth. If that were true, Hess argued, absorption of the radiation in 5 kilometers of
air should shield his instruments and cause them to discharge more slowly. Instead,
Hess noted an increased discharging rate at higher altitudes and concluded that the
rays were cosmic. Karl Jansky, in 1931, was concerned with the mundane problem of
finding ways to lower interference in radio telephone transmission. Instead he is now
remembered for finding radio emission from the Milky Way. The Los Alamos gamma-
ray physicists were searching for surreptitious nuclear bomb tests and found cosmic
gamma-ray bursts instead. The first X-ray star was discovered through a search for
lunar X-ray fluorescence. The cosmic microwave background radiation was found when
Arno Penzias and Robert Wilson at Bell Laboratories found they could not reduce below
a certain level the noise registered by a new sensitive radiometer they had developed.
Pulsars forced attention upon themselves when Anthony Hewish and Jocelyn Bell were
actually set to measure scintillation — twinkling — of radio sources. About half the
cosmic phenomena now known were chance discoveries. The number of these surprises
is a measure of how little we know our universe.

In addition to providing new discoveries, novel astronomical techniques have also provided
another, almost equally important datum, the rediscovery of phenomena recognized from
earlier observations. Frequently even this rediscovery occurs unexpectedly. The detection
of strong radio emission from Jupiter in 1955 represented the first, unexpected measure of
radio emission from a planet. Previously, planets had been considered to be undetectable
with available radiotelescopes because their theoretically predicted flux was too low to permit
detection.We say that a phenomenon is recognized in two completely independent ways if it
could be discovered equally well with separate instruments that differ by at least a factor of
a 1000 in one of their observing capacities. Spiral galaxies, for example, can be recognized
equally well through radio observations and through optical studies at wavelengths a million
times shorter. This independent recognition of phenomena through widely differing channels
of information provides a statistical key to the total number of observational discoveries we
might ultimately hope to make. A simple example illustrates the idea: consider a collection of
baseball or football cards. At the beginning of each season when the collection is still small,
all the cards differ from each other. But as the collection grows, an increasingly large fraction
of the cards becomes duplicated. Assume that all individual pictures are equally represented
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Figure 1.3: Phase space of discoveries. Credit Harwit (1984).

and assume further that the cards are obtained in some statistically random order. Then the
very first duplicate obtained tells us an important characteristic of the set — namely,that it is
finite. In a collection containing an infinite number of different cards randomly distributed,
no duplicates would ever be found unless an infinite number of cards were examined. As the
collection of cards grows and the number of duplicates increases, the relationship between the
number of single cards in the collection and the number of duplicates can yield an increasingly
accurate estimate of the total number of different cards in a complete set. The statistics
governing our search for cosmic phenomena through different channels of observation is similar
to the statistics of baseball cards. Each newly opened channel corresponds to a newly opened
package of cards. Initially, as our technical expertise grows and the number of available
channels increases, we discover an increasing number of new phenomena. But as the number
of our discoveries grows, a survey carried out through a completely new channel will mainly
uncover an increasing number of duplicates, i.e. phenomena already known from earlier
discovery through previously established channels. We currently recognize already quite a
number of duplicates, the rediscoveries of figure 1.2, such as the planets and the spiral, gas-
containing galaxies. Thus the number of cosmic phenomena is finite and can be estimated!

1.4 The phase space of observations

The phase space of observations is a multidimensional space, each point of which corresponds
to a different basic observing capability. The rectangular bordershown in figure 1.3 encom-
passes the space containing all conceivable astronomical observations that can be carried out
in our universe. The region of this space in which a given phenomenon appears, are deter-
mined by its observable traits and not by its position in the sky. The phenomenon’s location
in the phase space will therefore not change appreciably from one phase in the evolution of our
galaxy to the next, though the constellations of stars seen in the sky would change appreciably
during that time. If we consider the case of electromagnetic observations, as an example, five
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orthogonal axes can be defined, i.e. the spectral frequency or wavelength of the observation,
the angular resolution, the time resolution and the polarization of the received light. The
parameters define a five-dimensional space and any point contained in this space corresponds
to a particular observation one can carry out. Conversely, any observation one might pos-
sibly conceive corresponds to one or more points that can be unambiguously located in the
volume. This five-dimensional space constitutes therefore the phase space for electromagnetic
observations (sometimes a sixth dimension, the intensity, is also added to EM-phase space).

The framed portion of figure 1.3 represents the entire accessible multidimensional space.
The shaded portions are regions in which observations have already been undertaken. The
cosmic phenomena, are represented by a variety of symbols. Some of these symbols appear
in several portions of the space. Violins appear both in a region to which we already have
access and in a portion of the space in which we currently lack the instrumental capabilities
to observe. Some phenomena, such as the one represented by the Greek letter ® appear
only once. Some, like the question marks or the little men — which might represent life in
theuniverse — appear outside current instrumental reach. These phenomena remain to be
discovered. Others, still, have been observed in two widely separated shaded regions. These
are exemplified by the asterisks and open squares and represent phenomena independently
observed in two different ways.

1.5 Estimating the total number of cosmic phenomena

To estimate how many more phenomena might be discovered in further cosmic searches,
one must assume that past discoveries have been characteristic for those expected in the
future. If we take a total (finite) volume V for the phase space and consider a small portion
v of this volume to represent all the observations that have already been made, a cosmic
phenomenon with multiplicity m in V' will have an average value mv/V if we pick randomly
small compartments out of V until they make up a total subvolume v. The multiplicity m
refers to m points (or rather small compartments) in phase space at locations that would
lead to an independent recognition of the specific cosmic phenomenon. Let us take, for
example, the supernova phenomenon. Apart from detecting this as a bright optical flash, it
can independently be detected as a pulse of neutrinos (SN1987A) and, possibly, as a pulse of
gravitational waves. The multiplicity m would have to be set at either 2 or 3 or higher. The
probability of finding k independent recognitions of a particular cosmic phenomenon with a
multiplicity m in a subvolume v is given by the binomial distribution:

P(k) = ( " ) P —p)mt (1.1)

with p = v/V and the binomial coefficient

m m!
( k > T K (m— k) (12)

The average k of this distribution equals mp = mwv/V as we noted earlier. Suppose now that
apart from the cosmic phenomenon under consideration (e.g. the supernova phenomenon)
n other phenomena do exist. Let us also assume, since we have no other clue, that the
multiplicities of these n phenomena are all the same, i.e. equal to m. The number of singly
(k=1) detected phenomena in the subvolume v are then given by:

X=nPl)=nmp(l—p™! (1.3)
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Year of Tally

Cosmic phenomena, 1959 1969 1979

Total discovered (A + B + C) 30 39 43

Singly recognized (A) 25 31 35
Doubly recognized (B)
Triply recognized (C) 1 1 1
Best estimate for

total in universe (n) 103 99 123

Recognized fraction of total 0.29 0.39 0.35

Table 1.1: The number of phenomena estimated in different years.

We also have for doubly and triply detected phenomena;:

v=np@) = "INy (1.4
z=npE) = DT s (15)

If we assume m to be rather large and p to be small, we get an estimate of the total number
of phenomena n:

X
~— (X +2Y 1.6
R (X +2) (16)

provided that n is large compared to X and Y. The number of still unknown phenomena
follows from n — (X +Y'). Although this estimate gives no clue what so ever as to the nature
of these phenomena, it nevertheless provides a sense of complexity of the cosmos, i.e. a
measure of the scope of work lying ahead. When we tally the number of simply and doubly
recognized phenomena from figure 1.2, we get X=35 and Y=7. Using the above formula for
n, we can then estimate the total number of cosmic phenomena we may ultimately recognize
to be n =~ 125, i.e. only one-third are known today. To verify the plausibility of the above
approach, one can perform the following tests.The number n is a property of the universe,
and our estimate of n should therefore be constant, independent of the epoch in which the
estimate is made. With the data shown in figure 1.2, we can obtain estimates for n, based
on values for the number of singly and doubly recognized phenomena known in 1959, 1969,
and 1979. Using the equation relating n to X and Y then permits us to calculate the best
estimate for n that we would have obtained in each of these years. Table 1.1 shows that these
estimates only differ by about 20 percent. With the limited available data we can expect no
greater constancy than that.
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1.6 Unimodal and Multimodal Phenomena

The estimate just made of the wealth of cosmic phenomena, n, was based on the assumption
that each of the phenomena could potentially be found in several different locations in the
volume represented by figure 1.3. However, we have no assurance that this assumption is
valid. A substantial number of phenomena could exist that revealed themselves only through
a unique astronomical observing mode and were otherwise beyond reach of observational
discovery. How many of these unimodal phenomena does the universe contain? Are they more
numerous than the multimodal phenomena we estimate to number n ~ 1257 How can we tell?
We can estimate the maximum number of unimodal phenomena in this way: we examine all
the phenomena X that have thus far been singly recognized. Among these there will be a
subgroup numbering X', for which we cannot be certain whether a redundant recognition is
bound to be possible. For the remaining (X — X’)phenomena, astrophysical theory will permit
the prediction of an alternate mode of observation, based on our more intimate understanding
of these phenomena. At present there may be as many as four phenomena for which we are
not certain about the possibility of redundant recognition, and we can therefore set X' = 4
for the current epoch of astronomy. We may divide X', by a factor p, representing current
competence for making observations. That competence is just the fraction of the observing
space that technical developments have permitted us to search — the shaded fraction of the
plot in figure 1.3. The ratio X’/p then provides an upper limit to the number of phenomena
that ultimately would remain singly recognized. It can be made plausible that p ~ 0.01 at
present, and therefore X'/p &~ 400. We therefore expect a maximum number of about 400
unimodal phenomena. These may quadruple the total number of phenomena ultimately to be
found, making a total number of approximately 500. At our present stage of development in
astronomy, this is a satisfactorily close estimate which should continually improve as we learn
more about the phenomena we uncover.

We can see at least that we are not dealing with a list of phenomena numbering in the
thousands or the millions, an estimate that could have been quite conceivable without the
approach developed here. If this way of viewing the universe as a system of finite variety
seems slightly improbable right now, one should remember that geography, too, was once an
unimaginably variegated field. During the fifteenth and sixteenth centuries, discovery followed
great discovery. But then it all came to an end. Today there are few surface features on Earth
that remain unknown. The probability of discovering a new ocean or finding a mountain higher
than Mount Everest is nil. Uncharted features on the earth’s surface are now measured in
meters, not kilometers or miles. In a similar way we may expect the undiscovered cosmic
phenomena to shrivel in number until only minor features remain unnoticed.

1.7 The End of the Search

The history of most efforts at discovery follows a common pattern, whether we consider the
discovery of varieties of insects, the exploration of the oceans for continents and islands, or the
search for oil reserves in the ground. There is an initial accelerating rise in the discovery rate
as increasing numbers of explorers become attracted. New ideas and new tools are brought
to bear on the search, and the pace of discovery quickens. Soon, however, the number of
discoveries remaining to be made dwindles, and the rate of discovery declines despite the
high efficiency of the methods developed. The search is approaching an end. An occasional,
previously overlooked, feature can be found or a particularly rare species encountered; but
the rate of discovery begins to decline quickly and then diminishes to a trickle. Interest drops,
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Figure 1.4: Discovery and discovery rate projected into the future. Credit Harwit (1984).

researchers leave the field, and there is virtually no further activity. The discovery rate in this
course of events follows a bell-shaped curve, roughly as drawn in figure 1.4.

Correspondingly, there also is a steep S-shaped curve which represents the accumulation of
discoveries. The discovery rate for cosmic phenomena, averaged over early decades when
discoveries were sparse, is shown in the bottom, bell-shaped curve. The dashed portion is
an extension into the future, based on the rates measured in the past. It is computed for
a total wealth of multimodal phenomena estimated at 125, as explained in the text. The
tall S-shaped curve clearly exhibits the accelerating rate of discovery in recent decades and
represents data shown in figure 1.2. The dashed and dotted lines extend the curve into the
future, taking into account the general rise and fall of discovery rates seen in other ventures,
as well as the total estimated number of phenomena still awaiting discovery. The dashed line
assumes that there are no unimodal phenomena and levels off at n =~ 125 phenomena. The
dotted curve assumes a maximum number of unimodal phenomena and can reach a level as
high as 500. Projections into the future are based on two factors, a belief that a smooth
bell-shaped curve, symmetric about its peak, well represents the rate of discovery throughout
the search and a belief that the total number of multimodal phenomena to be found will equal
our best estimate of roughly 125. If this curve accurately corresponds to future developments,
we should have found some 90 percent of all the multimodal phenomena by the year 2200.
Thereafter,however, it might take several millennia to find the remaining few percent. Just
as astronomical discovery started a few thousand years ago with an awareness of planets that
regularly move through the starry sky, so too, the search may continue thousands of years into
the future. This is particularly true if many cosmic phenomena are unimodal. Discoveries will
then take place as long as new observational techniques can be introduced into astronomy,
i.e. as long as any portions of the volume drawn in figure 1.3 remain unshaded.

The phenomena to be discovered last might be those that occur with great rarity and emit
too little energy to be found at great distances across the universe. Alternatively, the last
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few phenomena might be those that emit carriers for which observing apparatus is developed
very late in the history of technological progress. The rate of discovery in that case would be
delayed by technical factors rather than by limitations intrinsic to the nature of the undisclosed
phenomena.
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Chapter 2

Information Carriers

An information carrier is defined here as a physical phenomenon which can be “sensed” and
processed by a detection system. In this way information can be extracted about the (physical)
state and characteristics of the information source, i.e. in this case a cosmic source.

In astronomy there are four important information carriers:

1. Electromagnetic radiation / Photons
2. Neutrinos

3. Cosmic-rays

4. Gravitational radiation / Gravitons

These will be discussed in the following sections. Other carriers also exist (such as meteorites,
moon rocks, space plasma) but these are beyond the scope of this course and will not be
discussed.

2.1 Electromagnetic radiation

2.1.1 Characterisation

Detection of electromagnetic radiation is the most commonly used way of doing astronomical
observations. An electromagnetic wave can be described by its wavelength A, frequency v,
energy € or characteristic temperature 7. These quantities are mutually related and are
commonly given in the following units':

wavelength A in A, nm, gm, mm, cm, m

frequency v =3 in MHz, GHz, THz

energy e = % = hv in eV, keV, MeV, GeV (1 eV = 1.6-1071° J)
char. temperature T = % = % =+ inK

with ¢ the velocity of light, h Planck’s constant and k£ Boltzmann’s constant.

The entire electromagnetic spectrum is divided into several classes, like gamma-rays and
radio waves. Most (groups of) classes have their own detection methods which will be treated
in the next chapters. Each class has its own convention of describing the waves: in X-ray

n these lecture notes SI units will be used, unless stated otherwise
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Figure 2.1: The electromagnetic spectrum. The observable part covers about twenty decades.
Waves with wavelengths above 10 km are absorbed by the interstellar medium.

astronomy observers use photon energy e, in the infrared one commonly uses wavelength. An
overview of the electromagnetic spectrum is given in figure 2.1. We shall now briefly review

the basic principles of the most important physical processes that give rise to cosmic sources
of EM-radiation.

2.1.2 Thermal radiation

There are two basic sources of thermal radiation:

e An optically thick radiator producing blackbody radiation governed by Planck’s law.

e An optically thin radiator producing a superposition of Bremsstrahlung, recombination
and line radiation.

Blackbody radiation

The energy density radiated by a blackbody at temperature 7" in a narrow frequency band
from v to v + Av is given by Planck’s law:

w

8mh
c? exp(ky) -1

p(v)dv = dv (2.1)

R

This equation can be rewritten as a function of the energy density p(e) between € and € + de
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Figure 2.2: Intensity spectra of blackbody radiation at various temperatures. B,dv = ;-p,dv.
Note the difference between the horizontal axis for B, and By. Credit Kraus (1966).

or p(A) between A and A + dX using p(v)|dv|= p(e) |de|= p(N) |dA]:

81 3

€)de = - de 2.2

ple) (he)3 exp (£7) — 1 (2:2)
8mhc 1

ANd\N = - d\ 2.3

p(A) ¥ oxp() — 1 (2.3)

The energy for which the energy density function is at maximum can be found by

o d[)(l/) hl/7na:v o hl/7na$
0==0~ 7 T = 3[1 eXp( KT ﬂ

Vimaz ~ 2.82-— (2.4)

Similarly one obtains €4, & 2.82kT and Apqp = hc/4.97KT (see also equation 2.40). Note
that this wavelength does not correspond to the frequency vp,aq-
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Spectral densities in X-rays and ~y-rays are usually given as a photon number density
instead of an energy density:

p(e) 8 €?
de = de = d 2.5
n(e)de e (he)3 exp (57) — 1 ¢ (25)
Question 1: Show that the energy where the photon number is at maximum
(Emaz)n = 1.D9KT (2.6)
q

The mean photon energy for a blackbody with temperature 7" is given by

J5° enede

J5° nede

~ 2.7kT (2.7)

€ =

Note that this energy is larger than the energy where the photon number is at its maximum.

The calculation of this integral is non-trivial. Consider the general form,

et —

1:/000 ‘”nldzzr(nﬂ)g(nﬂ) (2.8)

with T'(n) the gamma function that has the properties
Fn+1l)=n-I'(n) ; T'0)=1 = I'(n)=(Mn-1)! [n > 1] (2.9)

and ((n) the Riemann C function defined as:
() = Y o =1+ttt n>1].  (2.10)

Calculating these integrals results in

n=1 1 =T =1645
n=2 I = 2.402
n=3 I =T =6494
n=4 I = 24.886
n=>5 1 =57 =122,081

Thermal Bremsstrahlung

If an electron moves through an electric field, such as the Coulomb field of an ion (density
Nion, charge Z), it is accelerated and thus, it emits radiation. The electron loses kinetic
energy. If the electrons and ions are in local thermal equilibrium, the emission is thermal.
The emission coefficient is equal to:

_1
§(v) = 5.4- 103922 N,Nip, To Ze "/F e ergem 3 571 sr! Hz ! (2.11)

with g the average Gaunt factor (of order unity) and T, the electron temperature.
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Thermal line radiation

A molecule, atom or ion can decay spontaneously from a higher state u to a lower state [
emitting a photon. If the energy difference between the two states is Ae = hiy, the fre-
quency of the emitted photon should be close to vy (not exactly because of the quantum
uncertainty principle Ae- At = h). The frequency distribution function around vy is given by
a Lorentzprofile:

I, /4n?

=) = G £ (T

(2.12)

with
Ty=) Ay (2.13)
[

the sum over all transition probabilities A,; per second per particle from state u to all possible
lower states [ (Einstein A coefficient). The life time in the state v is At = T',;'. If there is
local thermal equilibrium the emission coefficient is

. 1
](V)spont = E hv ny Ay 7;[)(7/ - VO) (2'14)

with n, the population density of the upper state.

2.1.3 Non-thermal radiation?

Radiation is not always emitted by a thermal source, but can also be the result of non-thermal
interaction between two particles.
The most important non-thermal interactions comprise:

o 710 decay

Electron with photon

— low energy photon: Thomson scattering
— high energy photon: Compton scattering
— high energy electron: Inverse-Compton radiation

Electron in an E-field

— Non-thermal Bremsstrahlung

Electron in a B-field

— Non-relativistic electron: cyclotron radiation
— Relativistic electron: synchroton radiation

7¥ decay

A 7° (pi naught meson or pion) is a particle comprising an up and an anti-down quark (or
vice versa, see section 2.2.1). It can be formed during a high energy collision of two baryonic
particles. It is instable and has a mean life time of 8.4 - 1077 seconds and it decays into two
gamma-ray photons:

™ — v+ (2.15)

The rest mass energy of a 7° is 135 MeV, so both photons have energies of about 70 MeV in
the rest frame of the pion.

20Only the most important equations are given here.
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Figure 2.3: Radiation geometry (dotted line) of Thomson scattering for an unpolarised photon
beam.

hv

Figure 2.4: Compton scattering event.

Thomson scattering

Photons can be scattered on free electrons. If the photon energy hv is much less than the rest
mass energy of the electrons m.c?, the frequency of the incoming photon is not changed, only
its direction: elastic scattering. Consequently, thermal radiation will remain thermal after
scattering.

The probability of scattering is given by the electron density and the Thomson cross-
section for electrons

o = 8?”7% =6.65-107% m? (2.16)
with 7. the classical electron radius e?/m.c?. The scattering is not equally strong in all
directions, the radiation geometry for unpolarised radiation has a typical dipole structure.
The derivative of the Thomson cross-section to the solid angle €2 is
T

— = <(14cos“ 0 2.17
EIRE ) (217)
with € the angle between the incoming and scattered radiation (see figure 2.3).

Compton scattering

If the photon energy is of the order of the rest mass energy of the electrons, the scattering
becomes inelastic and energy and impulse is transferred from the photon to the electron. The
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wavelength change is given by

Ao — A1 = Ac(1 — cos ) (2.18)
with . the Compton wavelength:
Ae = " 941073 nm (2.19)
MeC

This energy loss is only important if A; &= A, so for gamma-ray photons. In other cases the
photon is Thomson scattered.
The cross-section for this process is given by the Klein-Nishina equation:

2 2
oc(€1,€) = %e /Q (E—j) <E—; + E—? — sin? 9) dQ (2.20)

Question 2: Show that this equation is equal to the Thomson cross-section o if €9 = €.

Inverse-Compton radiation

The process described above can also be reversed: very energetic electrons transfer energy
and momentum to (low energy) photons. This process can occur if the Lorentz factor 7 of
the electrons is (much) larger than 1, v > 1. If the frequency of the incoming photon is vy,
with its direction of propagation making an angle 8 with the velocity vector of the electron,
the electron ’sees’ a frequency v in its inertial system:

v
vy = (1 —=cosf), (2.21)
c
If the photons are not too energetic (i.e. yhr; < m.c?) normal Thomson scattering will take
place in the rest frame of the electrons: v, = v]. After transforming back to the observer’s
system, the frequency of the scattered photon becomes:

Vie=1y = wvy2(1+ Y cos 0 (1 — Y cos 0)
c c
4
2 5721/1 averaged over an isotropic radiation field (2.22)
~ 4v%s;  head — on collision (2.23)

Consequently the electrons will slow down and the photons will gain energy rapidly. The
average power radiated by the electron in an isotropic photon field equals:

_ 4 2
P =2 o7y Upn Z (2.24)
C

with Uy, the energy density of the photon field.

In the observer’s inertial system the emitted radiation will be strongly beamed in the
forward direction, see figure 2.5. The beam width of the scattered photons is approximately
proportional to y~!. This effect is called relativistic beaming.

For a blackbody photon field

Uph = /enBB(e) de = nype (2.25)

with 7, the number density of the photon field and € = hv = 2.7kT (see equation 2.7). The
average power P of equation 2.24 for relativisistic electrons (v = ¢) can be rewritten as

P = COTNph€ic (2.26)
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Figure 2.5: Radiation geometry of inverse-Compton radiation. The upper plots show the
radiation geometry in the rest frame of the electron, the arrows indicate the direction of ac-
celeration. The lower plots show the radiation geometry in the rest frame of the observer, the
electron velocity is along the horizontal azis.

O

which is self-explanatory if the cross-section for this process equals o in the electron rest
frame.
Suppose that the energy distribution of the electrons is a power law in total energy®:

n(etot)detor ~ Epgpdetor < n(y)dy ~~ %dy (2.27)

since € = ym,c?. The shape of the associated number spectrum of inverse-Compton scattered
photons can be easily derived from the relation

n(eic) = ’erth/O'(Eic, €, 7) 7_(1 dry (228)

with K, the normalisation constant for the electron energy distribution and o (e, €,7y) the
cross-section for producing a photon with energy ¢;. from the scattering of an electron with
Lorentz factor «v on a blackbody photon with average energy €. In this case we have

4

o(€ic, €,7) =0T 6 <6z'c — 5672> (2.29)

Question 3: Show that substitution of this cross-section yields:

elo=/2 ¢ (er D)2 (2.30)

n(eiC) ~ € ic

or n(ve) ~ P2 VZ»_C(QH)/Z (2.31)

Multiplication with hv;. yields the shape of the energy density of the scattered photons:
p(Vie) ~ PeD/2 =D/ (2.32)

’c

Non-thermal Bremsstrahlung

When a non-thermal electron is accelerated in an electric field, it will always emit Bremsstrahlung.
If the electron distribution is non-Maxwellian (out of thermal equilibrium), equation 2.11 is
not valid. The emission coefficient will not depend on the temperature T¢, but will depend on
the energy distribution of the electron beam. If the kinetic energy distribution of the electrons

is a power law in electron kinetic energy:

N (€kin)dekin ~ €pindEkin (2.33)

®Note that e is used for a photon energy and ¢ is used for an electron energy
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Figure 2.6: Left: electron spirals around o magnetic field line. Right: emission cones for
relativistic gyrating electrons. Credit Rybicky and Lightman (1979).

two cases for the emerging non-thermal Bremsstrahlung distribution can be distinguished:

e the electrons are non-relativistic. The Bremsstrahlung spectrum will be a power law
with photon number index —(a + 1).

e the electrons are ultra-relativistic (4ot & €gin). The Bremsstrahlung distribution will
be a power law with photon number index —a.

Cyclotron and synchrotron radiation
When an electron with charge ¢ moves through a é—ﬁeld, it will spiral around a magnetic
field line. Because the electron is accelerated it will emit radiation with a frequency
qB
c p—y
27TMe

(2.34)

the so-called Larmor or cyclotron frequency. This is the frequency at which the electron
completes one rotation around the field line. The radius of this helix is dependent on the
angle a between ¢ and B. The power emitted by the electron is also dependent on this angle

(see figure 2.6):
B2 2 2
P=or — Zsin?a =207 Upay — sin’a (2.35)
Ho C c
with Upyeg = % the energy density of the magnetic field.
For a random distribution of the magnetic field lines, equation 2.35 can be averaged over

all possible angles:

1)2

_ 4
P = § or Umag ? (236)
Normally the magnetic field will not be uniform and the radiation will not be monochromatic.

However, in the spectra of X-ray pulsars cyclotron lines have been observed.

Consider non-relativistic electrons (y ~ 1) near the surface of a neutron
star with B ~ 10% T. According to equation 2.34 they will emit 11.6
keV photons, i.e. X-ray radiation!

27



The frequency of the radiation emitted by fast electrons in a magnetic field is lower than
that of slow electrons due their relativistic mass increase. The rotation frequency (or gyro-
frequency) is given by:

B
Vg = Peo 1 (2.37)
Y 2myme
and the averaged power has increased with a factor 2:
_ 4 v?
P = S or Y? Upnag - (2.38)

As in the inverse-Compton process, this radiation power is again strongly beamed. The
observer will not see the radiation continously, but he will only see a short pulse whenever
the electron is moving in his direction. The principal frequency of these pulses is called the
synchrotron frequency vg:

3
Vg = 5731/g sin v (2.39)

and is (much) larger than the gyro-frequency if v > 1. These are very short pulses (73 of a
rotation period). This pulse spectum will be broad and consists of many discrete components,
i.e. the Fourier components of a sharp radiation pulse. This will blend into a real continuum,
when the electrons have a velocity distribution, or when the magnetic field is not uniform,
which is the practical case.

Since vy ~ 72, similar to the inverse-Compton process, the photon distribution function
is again a power law with spectral index (o + 1)/2 provided that the electrons have a power
law energy distribution with index «.

2.1.4 Astrophysical relevance

Radiation of black bodies is typically emitted in a broad band around the maximum wave-

length

0.00290
Amam = T m (240)

For temperatures between 1 and 10% Kelvin, this radiation will thus fall between the near-
radio (microwaves) and the extreme-ultraviolet (EUV). Cold objects (around 10 - 100 K),
such as cool clouds of gas and dust, emit infrared waves. Normal stars are best observable in
the visible regime. Very hot objects (white dwarfs, neutron stars, supernova remnants) are
predominantly shining in the ultraviolet and soft X-ray regime. Large velocities are involved
for the emission of harder X-rays.

Not only accreting neutron stars and black holes produce hard X-rays, also heavy stars
with extended hot atmospheres, and hot diffuse gas in clusters of galaxies are good X-ray
emitters.

Gamma-rays can not be formed in this way, much higher energy particles are needed, such
as cosmic-rays. When these particles interact with any atom, gamma-rays will be emitted.
The main source of these photons are nebulae, dark molecular clouds and central parts of
galaxies.

The inverse-Compton effect produces high energy photons. Their energy can be estimated

from equation 2.22 and 2.7
2
€ic €e
— )| = 12007, | —— 241
<1eV> 00 Z<1 GeV) (2.41)
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with €, = ymec?. If the cosmic background radiation (T, = 2.7 K) is used as the incoming

radiation field, an electron of 550 MeV will boost the photon to 1 keV (X-rays). An electron
of 550 GeV will produce a hard gamma-ray photon of 1 GeV.

Consider a proton (with mass my) falling from infinity onto the surface
of a compact star (mass M,, radius R,). Its potential energy is converted
into kinetic energy through:

1/2
1, GM, . <2GM*> (2.42)

—myv° = m
P R* P R*
For a neutron star (M, = 1 Mg, R, = 10 km), v = 0.5¢ ! If all this
kinetic energy would be converted into thermal energy, an estimate of
the maximum temperature T,,,, follows from
GM.
klnaz = R—*mp = Tz ~ 1012 K (2.43)
%
for a neutron star. For a white dwarf (M, = 1 My, R, = 10* km) Tz
amounts to ~ 10° K.
Consider next “bulk-mass” accretion flow onto the compact star with
a rate M = dd—]‘f The radiation luminosity arising from this bulk-mass
infall into the gravitational potential well of the compact star is given

by
GM, .
= M 2.44
i (2.44)

An estimate of the effective temperature T, can now be obtained by
employing Stefan-Boltzmann’s law for a black body radiator with the
total surface area of the compact star, i.e.

L

_GM, .

L M = 4nR.*05pT," (2.45)

*

with osp the Stefan-Boltzmann constant (= 5.67 - 1078 W m~=2 K—4).
For an accretion rate M = 109 M, yr—! this yields an effective temper-
ature T, ~ 10" K (L = 103" W) for a neutron star and T, =~ 6 - 10* K
(L = 10?" W) for a white dwarf. Such temperatures make these ac-
creting objects shine in the ultraviolet, extreme-ultraviolet (EUV) and
X-ray wavelength regimes.

The energy range in which synchrotron photons are emitted, depends on the magnetic
field strength and the typical electron energy €, = ymqc?. From equation 2.39 we find:

 \ noor(BL) (&)’
<1 eV> ~ 0.07 < lG> (1 GeV> (2.46)

So galaxies (B = 1 uG, e, = 1 GeV) are observable at radio frequencies.
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A substantial part of the electromagnetic radiation of the Crab nebula is syn-
chrotron emission. Picture credit NASA/ESA Hubble, Allison Loll/Jef Hester
(2005). This radiation is observed over a wvery broad frequency band, from
radio to gamma-ray waves. The typical magnetic field strength in this nebula
is B 5- 1071 G, so the electrons which are involved should range from

1007 eV (24 MHz) = e
1 GeV = Etot

50 MeV (y =~ 10?)
5 PeV (y=~1019)

Radio emission €
Gamma emission €g

~ ~
~ ~
~ ~
~ ~

2.1.5 Multispectral correlations

To understand the source of radiation (the information source) better it is often enlightening
to look for multispectral correlations in the observed radiation fluxes. For instance: if an
observer wants to trace a dark (molecular) cloud, he can study the H, Hp, CO or OH lines
in the radio and infrared. But the cloud is potentially also visible in gamma-rays: primary
cosmic-ray protons and heavy nuclei (see section 2.3.1) can interact with cloud gas, producing
7%-mesons which decay in y-rays.

Synchrotron and inverse-Compton radiation are coupled through their generating electron
beams. This can already be seen from the similarities in the equations for the average power
(2.24) and (2.38). When an electron beam travels through interstellar space, which has a very
low magnetic field (approximately 5 xG), both synchrotron radiation and inverse-Compton
radiation (from the cosmic background photons) are produced, but in a completely different
wavelength range: the synchrotron radiation will be emitted as radio waves and the inverse-
Compton effect produces X-ray or gamma-ray photons. The energy ratio of the two waves is
(using equations 2.41 and 2.46):

€ic 4 -t
— =2-10"T, (—) (2.47)



If a magnetic field B; =5 uG and T, = 2.7 K are substituted, a ratio €;./e5 = 109 is obtained.

This equation can also be derived if the synchrotron process is described as a change of the
electron energy as a result of the magnetic field. This change is proportional to the magnetic
field strength and the proportionality constant is the Bohr magneton:

hq
= 2.48
KB N1 ( )
The ratio (2.47) can then be calculated as
e 2.7kT. B\
bo _ 2TRT: _ gt (¢> (2.49)
€s "B 1G

The difference of about a factor of 2 in the numerical coefficient arises from the fact that the
inverse-Compton and synchrotron spectra produced by a monochromatic electron beam are
not d-functions but show a rather wide distribution. This has not been taken into account in
these ‘order of magnitude’ calculations.

2.1.6 Observing locations

There are two distinct ways of observation:

e In-situ, such as the

— geosphere, e.g. the magnetic field of the Earth

— sun, e.g. solar wind composition and velocity observations by a space probe (e.g.
Ulysses, SOHO)

— planets, e.g. magnetic fields, atmosphere and rock composition (Viking, Pionier,
Voyager, Mars Sojourner, Spirit, Opportunity)

e Remote sensing (or teledetection)

Remote sensing is the dominant technique for astronomical observations. During the
past several decades a very large number of observing facilities have been built which detect
electromagnetic waves from space.

One major division between observing locations is ground-based and space-based. Both have
advantages. Ground telescopes can in principle be

e larger (> 10 m diameter of the primary mirror)

e cheaper (80 — 100 M$, typically a factor 10 less than space telescopes)
e long lasting (> 50 year)

e casily accessible (changing instruments and refurbishment are ‘routine’)
e upgraded (install new, bigger and more complex detectors)

In contrast, space telescopes are more sensitive because they do not suffer from the atmosphere
and the telescopes can more easily work at lower temperatures. Ground telescopes can only
observe in the radio and optical band. Only at some locations also observations in the infrared
can be done. Moreover, ground telescopes have only access to a limited part of the sky.

The main influence from the atmosphere is due to
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e absorption
e emission

— black body radiation of atmosphere itself (infrared above 2 pm)

— variable OH emission lines (1 — 2 pm, 30 — 40 % variations within a few seconds)

This absorption and BB-emission is mainly caused by HyO in the atmo-
sphere, but the Hy O-content (and so the pressure P(z)) is a strong function
of altitude. )

P(z)=P(z=0)-¢ & (2.50)

with H the scaleheight, which is different for air and water:

Huyr = 8000m
Huyater = 3000 m

Observation at high altitudes (mountains, airplanes) gives large improve-
ments in the thermal IR windows, but it does not reduce the OH emission
which is formed at about 90 km height.

e scattering due to dust

e scintillation and seeing

When a plane coherent wave front travels through the Earth’s atmosphere, it encounters
density variations due to turbulence and temperature differences. These inhomogeneities
form cells with different indices of refraction, so that the wave front is distorted. These cells
have typical diameters of 10 cm and change with temporal frequencies between 1 and 1000
Hz. So a 1 meter telescope sees about 100 of these cells changing potentially every 1 to 10
milliseconds. Micro turbulence (even smaller scales) causes seeing. All this results in a high
frequency jitter of the image: a twinkling star!

Conditions for a good observing site are

a stable atmosphere

e as high as possible

e on a island (water vapour is kept in a low inversion layer above the ocean)
e 1o pollution (dirt)

e 10 light pollution

Good sites are La Palma (Canary Islands, Spain), Hawaii (USA), La Silla and Paranal
(Chili) and Kitt Peak (USA).

Space telescopes have two possible orbits, a high (or deep) and a low (near-earth) orbit.
Low orbits are within the Van Allen radiation belts. It is relatively easy to put a high mass
telescope in such an orbit which can be serviced by the Space Shuttle (e.g. the Hubble Space
Telescope). But the orbit degrades and eventually the spacecraft will re-enter the atmosphere.
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Moreover, it cannot observe a source for a long uninterupted time interval, because its low
orbit around the earth gives rise to extended eclipses during each, typically 90 minute, orbital
period.

High orbit satelites suffer from extra noise due to solar flares and its detectors should
be radiation shielded. But it can observe a source for a long uninterupted period (24 — 100
consecutive hours) and it has a real-time data link with a single ground station during almost
its complete orbit (Example: ESA’s Infrared Space Observatory (ISO)).

2.2 Neutrinos

2.2.1 Characterisation

In particle physics all particles are divided in two groups: quarks and leptons. Moreover anti-
particles of these types do also exist. All these particles have spin 1/2, they follow Fermi-Dirac
statistics and are called fermions.

Single quarks have never been observed, but they constitute the building blocks of larger
particles, the hadrons. Several types of quarks are known and they are characterised by a
flavour and a colour. Six flavours exist: up(u), down(d), strange(s), charm(c), bottom(b) and
top(t), and there are three colours, red(r), green(g) and blue(b).

d u s c b t
Mass (GeV) 0.004 - 0.008 0.002 - 0.004 0.08-0.12 1.15-1.35 4.1-44 170 -190
Charge (q) -1/3 +2/3 -1/3 +2/3 -1/3 +2/3
Spin J 1/2 1/2 1/2 1/2 1/2 1/2
Baryon number 1/3 1/3 1/3 1/3 1/3 1/3

Table 2.1: Mass and quantum numbers of quarks.

Particles consisting of three quarks are called baryons, such as the proton (u-u-d, each a
different color) and the neutron (u-d-d). Mesons are made up of two quarks, such as the pion
(m meson) which consists of an up and an anti-down quark (or vice versa).

There are six types of leptons and anti-leptons. The lepton family consists of the electron
(e7), muon (p~), tau (77), electron-neutrino (1), muon-neutrino (v,) and the tau-neutrino
(vr). The anti-lepton family consists of et (positron), p, 7% and the anti-neutrinos ., v,
and 7. Leptons do not have a color and they do not possess an electric or magnetic moment.
They do not stick together to form other particles.

e Ve 7’ Vy T Vr
Mass (MeV) 0511 < 10eV | 105.66 <0.17] 1784.1 <24
Charge (q) -1 0 -1 0 -1 0
Decay time (s) | > 10% 2.2 -107° 3.10713
Spin 1/2 1/2 1/2 1/2 1/2 1/2

Table 2.2: Mass, decay time and quantum numbers of leptons.

It is still not clear whether or not the neutrinos have a mass, although rather recently
(1998) evidence was found that neutrinos should have at least some mass. Their existence
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was derived because energy and impulse should be conserved in S-decay reactions, such as:
Be — YN +e + ... (2.51)

If this were a two body process, conservation of energy and impulse would require that the
electron would always get a fixed velocity (two particles with two unknown velocities and two
conservation laws give a unique solution). But it was observed that there was a distribution of
electron velocities. So a third particle needed to be invoked, the neutrino. Basically a neutron
in the unstable core of the atom decays into a proton, an electron and an anti-neutrino:

n — pt+e + 1% (2.52)

A muon-neutrino is formed during the decay of a muon or a pion:

pt o — et + e + 1, (2.53)

™ — o+, (2.54)

Neutrino radiation is always characterised by its energy in electronVolts (eV).

2.2.2 Astrophysical relevance

Neutrinos from only two cosmic sources have been detected. Practically all detected neutrinos
are produced in nuclear reactions in the core of the sun, such as:

pt +p" — M+ et + 1 (2.55)
BN — BC+ et + 1 (2.56)

This last reaction is an example of S-decay which produces a positron.

Another neutrino source was the supernova 1987A from which a pulse containing about
10 neutrinos was detected. These neutrinos are formed in the inverse f-decay process during
the collapse of the core of the star:

P +e — n+ v (2.57)

2.2.3 Observing locations

Neutrinos interact rarely with other particles and are consequently very difficult to detect.
Large tanks of a suitable absorbing material are necessary. These should be located deeply
underground (e.g. mines or mountains) to shield the neutrino telescope maximally against
noise signals.

The first detector was built in 1968, comprising a large tank of tetracloroethene (C;Cly), a
cheap cleaning agent. About 20 years later two watertanks, originally constructed to observe
possible proton decay, turned out to be good neutrino detectors. These are the Kamiokande
detector in Japan and the Irvine-Michigan-Brookhaven (IMB) detector in the USA. A gallium
based detector was recently completed in the Gran Sasso tunnel (Appenine mountains) in Italy.

2.3 Cosmic-rays

2.3.1 Characterisation

Cosmic-rays (also energetic particles from the sun are sometimes included in cosmic radiation)
consist mainly of atomic nuclei at very high velocities. Most particles are protons (84 %) and
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helium nuclei (14 %), the rest are heavier nuclei, positrons and electrons. These have Lorentz
factors ranging from 2 to 10'!. Cosmic-ray particles are always characterised by their energy
(in electronVolts). For a particle which is more massive than a proton, its kinetic energy is
usually given in energy per nucleon.

Electrons have a rest mass energy of 511 keV, protons have 938 MeV. The total energy of
larger particles with charge Z and mass M = Am,, is

E. = yMc* = EI¢st - EFim (2.58)
So the kinetic energy per nucleon of such a particle is given by
kin 5
% = (y—1)myec (2.59)

A particle becomes relativistic when v > 2; an electron becomes relativistic, if its kinetic
energy is above 0.5 MeV, a proton if its energy exceeds 1 GeV. Most cosmic-ray particles
incident on the Earth’s atmosphere have energies around 10° eV and a velocity of 0.9¢c. These
so-called primary cosmic-rays have a flux of 10* particles per square meter per second. The
energy spectra of cosmic-ray particles above 1 GeV show a typical power law dependence.
This is shown in figure 2.7 for four species: H, He, C and Fe nuclei.

2.3.2 Astrophysical relevance

Cosmic-rays are presumably produced in supernovae and near the surface of pulsars. They
can be accelerated in shocks (circumstellar and interstellar) and in pulsar magnetospheres.
Their composition (including isotopic composition) near the Earth gives us important clues to
cosmic acceleration and propagation phenomena and to the composition of interstellar clouds.

2.3.3 Observing locations

Primary particles cannot reach sea level and need to be observed from high-altitude-balloons
and space platforms. If such a primary cosmic-ray particle enters the earth’s atmosphere it
will collide with an air particle (predominantly N and O) at an average height of 30 to 60
kilometer. This interaction produces a large number of different particles such as protons,
neutrons, electrons, positrons, gamma photons, neutrinos, pions and muons. If the incoming
particle is sufficiently energtic (TeV (101?) to PeV (101%) energies), these secondary particles
will have sufficient energy to interact in turn with other particles, so a particle shower will
reach the surface of the earth. These particles are called secondary cosmic-rays.

Also muons are detected as secondary particles which may seem puzzling, since their mean
travel distance before they decay is about 660 meters according to Newtonian mechanics. They
are formed at heights above 30 kilometer, but due to relativistic time dilatation it is possible
for them to reach the ground before they decay.

The study of very-high-energy cosmic-rays by means of air shower production can therefore
be done from the ground with the aid of a so-called coincidence technique between several
radiation detector arrays.

2.4 Gravitational radiation

2.4.1 Characterisation

A mass m which is accelerated in a gravitational field due to a mass M emits gravitational
waves. But since action = — reaction, both masses move in opposite directions, so the dipole
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Figure 2.7: The differential energy spectra of cosmic-rays as measured from observations made
from above the Earth’s atmosphere. The spectra for hydrogen, helium, carbon and iron are
shown. The solid line shows the unmodulated spectrum for hydrogen, i.e. the effects of prop-
agation through the interplanetary medium upon the energy spectra of the particles have been
eliminated using a model for the modulation process. The flux of the helium nuclei below
about 60 MeV nucleon™" is due to an additional fluz of these particles which is known as the
anomalous * He component. Credit Longair (1992).

part of the radiation cancels and the lowest order term becomes the quadrupole radiation.

Except for the indirect measurement of gravitational waves from the binary pulsar PSR
B1913+16, for which Russell Hulse and Joseph Taylor shared the Nobel price in 1993, no
direct detection of gravitational radiation has yet been made. PSR B1913+16 comprises two
orbiting neutron stars with a period of 7.8 hours, one of the neutron stars is observable as a
radio pulsar, with a period of 37.9 milliseconds. The shift in the times of periastron passage
measured over 20 years with respect to a constant orbital period is shown in figure 2.8. The
general theory of relativity predicts the curved solid line
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Figure 2.8: Emussion of gravitational radiation by PSR B1913+16 leads to an increasing
deviation in the time of the periastron passage compared with o hypothetical system whose
orbital period remains constant. Solid curve corresponds to the deviation predicted by the
general theory of relativity. Dots represent the measured deviation. The data provide the
strongest evidence now available for the existence of gravitational radiation. Credit Weisberg

& Taylor (2005).

2.4.2 Astrophysical relevance

According to the general theory of relativity, detectable gravitational waves should be emitted
by a number of nearby, very close double star systems. Since the frequency of the signal is
known, detection of the periodic signal should be greatly facilitated, it is to be expected at
relatively low frequencies (10~* — 1 Hz), corresponding to wavelengths in the range 3 - 108 —
3 - 102 m (the latter value being 20 times the distance from the Sun to the Earth!).

2.4.3 Observing locations

Ground-based detectors will search for signals from supernovae, compact binary coalescence
and pulsars at frequencies well above 1 Hz. The low-frequency range (below 1 Hz) will
never be accessible from the ground because it is masked by Earth-based gravitational noise.
Moreover, there are several intrinsic uncertainties about the strength and distribution of all
sources emitting higher frequencies.

Space-based observatories are required for frequencies below 1 Hz, moreover local close
binaries emitting at these low frequencies, are potentially assured sources. Supermassive black
holes, residing in the cores of active galaxies, do not radiate above 1072 Hz and consequently
also require space-based detectors. Currently a space-based gravitational wave antenna (the
Laser Interferometer Space Antenna LISA) is under development as a joint project between
the US(NASA) and Europe(ESA) for an anticipated launch in 2013.
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Chapter 3

Stochastic Character of Radiation
Fields

3.1 Radiometric units

The spectral radiance or monochromatic intensity is the basic quantity to describe a radiation
field. It is defined as the amount of radiant energy per unit time, per unit area perpendicular
to the beam, per unit solid angle, per unit wavelength (or frequency, energy). The relevant
geometry is displayed in figure 3.1, the spectral radiance is expressed as:

I Q1) = — v (3.1)

- Q dQ dt dX\ dA

The monochromatic radiation flux density or spectral irradiance F (), t) is derived by integrat-
ing I(\, 9, t) over the solid angle:

dA,

dA

Figure 3.1: geometry for defining intensity(radiance). Credit Bowers and Deeming (1984).
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dE
FOV) = dt dAdx

/I A\, 0,0,t) cos@ sin@ db d¢ (3.2)
0

The total irradiance F(t) is subsequently obtained by integrating over all wavelengths.
The spectral(monochromatic) radiant fluz is the total amount of monochromatic radiant energy
that is transported through a given area per unit time interval:

B\, 1) dt dA //I (A6, 1) 7i- 0 d dA (3.3)

Finally, the radiant fluz represents the total amount of radiant energy that is transported
through a given area, integrated over all wavelengths, per unit time:

///I)\Qt -G dQ dA d (3.4)

For an isotropic radiation field from the upper hemisphere, e.g. an isotropically distributed
sky background, the following relation holds:

F(\t) = nI(AQ,1) (3.5)

and for a point source at position Qg with spectral radiance S,(A,t) the spectral irradiance
is:

FLG) = /Sp()\,t) 5(63— o) 7 - G dO

Sp(A, 1) 7t - Qg = Sy(\, 1) cos by (3.6)

= Sp(A,t)  for normal incidence

The spectral radiance I, which characterizes the radiation beam, has intrinsic statistical fluc-
tuations. As a consequence, an astronomical measurement has to be treated as a stochastic
process.

In the following paragraph, some basic statistical notions will first be reiterated, like the
definition of random variables and the properties of frequently encountered probability dis-
tributions. Next, the concept of a stochastic variable is introduced and some basic properties
are discussed. These will be used later for describing the astronomical measuring process.

3.2 Random phenomena and variables

3.2.1 Parent population

A random phenomenon is characterized by the fact that the outcome, in terms of a numer-
ical value, is not predictable in a deterministic sense, but exhibits a more or less smooth
distribution of outcomes if repeated many times. Associated with this notion is the random
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variable (RV), which value constitutes a numerical outcome of a certain random phenomenon.
The probability density distribution of a random variable gives the possible values and the
probabilities assigned to these values.

Random variables can be subdivided in two categories:

e Discrete random variables, comprising a finite number of possible values.

e (Continuous random variables, comprising all values in a certain number interval, i.e. an
infinite number of possible values.

If an infinite number of measurements could be taken, the result would give the way in which
the observed data points are distributed, i.e. the true probability distribution. This distribu-
tion is called the parent distribution, practical measurements can be hypothesized as samples
of an infinite number of possible measurements which are distributed according to the parent
population. In other words the parent population parameters can be perceived to become
equal to the experimental parameters in the limit of an infinite number of measurements:

(Parent parameter) = ]\}im (experimental parameter) (3.8)
— 00
If N measurements are made of a quantity z, labeled x1, xo, ..., 2N, the mean u of the parent
population can be defined as:

N—00

p= lim (%Zw& (3.9)

The mean is therefore equivalent to the centroid or average value of the quantity x.

The median value 115 of the parent distribution is that value at which there are equal
numbers of values higher and lower than p;/,. Expressed differently, the probability that
an arbitrarily selected value is higher than the median is 50%, and the probability that an
arbitrarily selected value is lower is 50% also:

P(x; > py/2) = Pw; < pyy2) = 0.5 (3.10)

Finally, the most probable value jimax of the parent distribution is the value at which the
distribution peaks:
P(,U'ma.x) > P(xz o Mmax) (3.11)

For symmetric distributions, like the Gauss function, the average, median and most prob-
able value are all the same. The differences are only visible in asymmetric functions, as in
Figure 3.2.

An appropriate measure of the dispersion of observations is the standard deviation o. The
variance o is defined as the limit of the average of squares of the deviations from the mean

7%

N—0

o? = lim l% Z(:EZ — M)Q] = lim (% Zw?) — u? (3.12)
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Figure 3.2: Illustration of the various definitions of "average”, illustrated for the Mazwellian
distribution function f(x) = 22G(z,0,25) where G(z,u,0) is the Gauss-function of equation
3.27.

3.2.2 Discrete and continuous distributions: expectation values

If there are n different observable values of a discrete random variable z, expression (3.9) can
be replaced by:

p= ifﬂjp(fﬁj) (3.13)
j=1

where P(xz;) is the probability to obtain the discrete value z; and no two values of z; are
equal. Similarly, the definition of the variance can be redefined in terms of the probability

function P(z;):
n n

o* =3 [(ws = Play)| = 3 [ Play)] - w? (3.14)

j=1 j=1
The mean p is the expectation value E{x} of z, and the variance o2 is the expectation value

E{(z — 1)} of the square of the deviations of x from .
The expectation value of any function f(z) of x is given by

n

E{f(x)} = > [f(z;)P(z;)] (3.15)

j=1

If the parent distribution is considered as a continuous, smoothly varying function p(z),
the mean p and the variance o2 are given by the following integral expressions:

+00 +o0
= /(IIP((II)d(II and o= /:EQP((II)d(II—,U,Q (3.16)
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Figure 3.3: Illustration of the difference between the parent distribution and the distribution
derived from a finite number of measurements, in this case 100 trials displayed with the his-
togram. The solid curve is the actual parent distribution, a Gaussian distribution with average
u = 3.000 and standard deviation o = 1.000. The dashed curve is the estimated parent distri-
bution derived from the histogram with parameters T = 3.045 and s = 1.078.

The expectation value of any function f(z) of z follows from:
+oo
B{f(@)} = [ f(@)P()ds (3.17)
—00

3.2.3 Sample parameters

In practical experiments, only a finite number of observations will be made. Consequently,
the experimental data only allow an estimate of the parameters of the parent distribution.
For a series of N observations, the most probable estimate of the mean p is the average = of
the observations (see a later paragraph on the method of mazimum likelihood). Hence:

_ 1 1 &

n =T Nzail: Nij]?j (318)
i j=1

with f; the number of times each value of z; is observed, no two values of z; being alike. This

average 7T is called the sample mean and is distinctly different from the parent mean p.

The best estimate of the parent variance o2 is given by the experimental or sample variance

52, according to:

T Ty 3 (. LR ) NS (3.19)
j=1
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Figure 3.4: (Left) Binomial distribution function for flipping a coin (10z) Pp(k,n,p): n = 10
and p=1/2; p =5 and o0 = 1.6. (Right) Binomial distribution function for throwing 10 dice
Pp(k,n,p): n=10 and p =1/6; pp = 1.67 and 0 = 1.2.

where the factor N — 1 in the denominator is the number of degrees of freedom left for
assessing s? after determining the value of T from N observations. Again, the value of the
sample variance s? is distinctly different from the parent variance o unless N — oo.

Figure 3.3 shows the deviations between parent mean and sample mean, parent standard
deviation and sample standard deviation respectivily, for a sample of 100 measurements. The
magnitude of the errors in sample mean and variance is obviously dependent on the size of
the sample. A quantitative estimate of these errors will be discussed later in this chapter.

3.3 Probability density distributions

In this section the probability density distributions are reviewed that often occur, or are
postulated to occur, in measurement series.

3.3.1 The binomial and Poisson distributions

An observer tries to detect photons during a certain time interval. The expected number
of photons to arrive in this interval is u. How many photons will the observer detect? To
address this question, the measurement interval is subdivided in n equal sub-intervals. In each
sub-interval the probability that a photon arrives is therefore p = u/n (a correction to this
statement follows below!), the probability that no photon arrives is 1 — p. The measurement
of the observer can thus be considered as a series of n trials to find a photon, each trial having
probability p of succeeding. The probability that k& photons will be detected is then given by
the binomial function:

Pg(k,n,p) = ( Z >p’“(1 —p)"F (3.20)

The binomial function also describes processes like flipping a coin, or throwing dice. For
example, when a coin is flipped the probability of getting head is p = 1/2, and the probability
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of getting k£ times head when the coin is flipped 10 times is given by Pg(k,10,0.5), this
illustrated at the left in figure 3.4. When we throw 10 dice, the probability of getting & times
a 1 is given by Pp(k,10,1/6), illustrated at the right in figure 3.4.
The mean p of a binomial distribution can be evaluated by combining the definition of i as
the first moment of the distribution function and expression (3.20):

p= Z [ pr(1 - )""“} = np (3.21)

Likewise, the variance o2 of a binomial distribution is computed by considering the expectation
value of (k — p)%:

7= Y [k = et =] =t ) (3.22)

Note: evaluate these sums yourself!

The results for the mean x4 and the variance o are remarkably simple. If the probability for a
single success p is equal to the probability for failure p=1— p:%, the distribution is symmetric
about the mean p, and the median p 1 and the most probable value are both equal to the

2 is equal to half the mean: o?=p/2. If p and ¢g=1 — p are

not equal, the distribution is asymmetric with a smaller variance.

Return now to the experimenter measuring the arrival of photons. If the sub-interval is large,
there is a finite probability that more than 1 photon will arrive in this particular interval,
which is not taken into account in the above argument. To suppress this probability, the limit
is taken of letting the number of trials n go to infinity, keeping the product np = u constant.
In this limit the binomial distribution changes into the Poisson distribution, in which the
probability of obtaining k& photons is given by

mean. In this case the variance o

k

Pp(k,p) = bt (3.23)

The derivation of this expression follows from:

N
,U_ k
k!

n(n—1)(n —2). (n—k—i—l)(l—u/n)"_u_le_“_u_ke L

nk (I—p/n)k K1 K

The exponent makes sure that the sum )" Pp(k, i) over all probabilities from k = 0 to k = oo
is 1 (remember e = 1 +z + z2/2! +23/3!....).
Suppose the observer carries out an infinite number of observations (this is obviously a
thought ht experiment), and should then on average detect 1 photons: k = p. The variance
= (k — p)? also equals p.
The derivations of these results follow from:

_ Z e _ oo
,U’Q
— — o Mot —
= (1+1,+2 +...) =€ Fue! =p
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Figure 3.5: (Left) Poisson distribution function Pp(k,u) for p =5. (Right) Poisson distribu-
tion function Pp(k,p) for p = 1.67. The dotted lines show Gaussian approzimations to the
Poisson function.
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hence
T \o > > Mk 2 2 2
o2 = (k—u)2ngQP(k)—MQZe‘“;]kZH—M =p+pt—p’=p

Two examples of the Poisson distribution are given in figure 3.5. The dotted lines in-
dicate Gaussian approximations to the Poisson function. It is clear from these examples
that especially for low values of the mean u, the Gaussian approximations underestimate the
probability of large deviations!

3.3.2 The Normal or Gaussian distribution

If p is large, the Poisson distribution is well approximated by the normal distribution, also
called the Gaussian distribution:

I — 1\ 2
Pg(z,p,0) = ﬁexp l—% ( - M) ] (3.27)

for the special case where o = |/j1. The Gauss function has the computational advantage over
both the binomial and the Poission distribution that it is easy to compute; it does not contain
such expensive calculations as the factorials. It also describes (or is assumed to describe) the
distribution of measurements in many physical experiments.

The shape of the distribution is illustrated in figure 3.6. It is a bell-shaped curve symmetric
about the mean p. The width of the distribution is characterized by the full-width at half-
mazximum, which is generally called the half-width I'. This is defined as the range of x between
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Figure 3.6: Gaussian probability distribution Pg(z,u, o) versus ¢ —u; I' = 2.3540 and P.E. =
0.67450. Credit Bevington (1969).

the values at which the probability Pg(x, s, ) is half its maximum value:

1 1
Pg(z £ EF,,U,,O') = EPg(u,,U,,O') I' =2.3540 (3.28)
A tlangent drawn along the portion of steepest descent of the curve intersects the curve at the
e 2 points z=p + o and intersects the z-axis at the points z=y £ 20:

Po(p £ 0,p1,0) = ¢~ 2 Pa(p, i, 0) (3.29)

The mean and standard deviation of the Gaussian distribution are equal to the parameters
p and o given explicitly in the probability density equation (3.27). This equivalence can be
verified by using the definitions of ;1 and o as the expectation values of z and (z — pu)? for
continuous distributions, as discussed in the previous paragraph.

The probable error P.E. is defined to be the absolute value of the deviation |z — p| such that
the probability for the deviation of any random observation |z; — u| to be less is equal to % In
other words, half the observations of an experiment are expected to fall within the boundaries
denoted by p+ P.E.. The relation between the P.E. and the standard deviation o is found by
evaluating the point at which the integral probability curve yields a probability of % of being
exceeded.

3.3.3 The Lorentzian distribution

The Lorentzian distribution is frequently encountered in spectroscopic data reduction, since
it describes the resonance behaviour associated with atomic and nuclear transitions. The
probability density function is displayed in figure 3.7 and defined as:
1 r/2

PL($7N7F) = —

"= P + 7 530
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Figure 3.7: The Lorentzian probability distribution for p = 25 and I' = 5.

The distribution is symmetric about its mean p, with a half-width I"'.  The most noticable
difference with the Gaussian distribution is the fact that it does not diminish to zero so rapidly,
for large deviations it only decreases proportional to the square of the deviation.
The mean p is one of the free parameters, it is also equal to the median and the most
probable value, like in the case of the Gaussian distribution. However, the standard deviation
is not defined for a Lorentzian distribution as a consequence of its slowly decreasing behaviour
for large deviations, i.e. the integral defining the expectation value for the square of the
deviations is unbounded. The width of a Lorentzian distribution is characterized by the half-
width parameter I', defined such that when the deviation from the mean x — p = I'/2, the
probability density Pp(z,u,T’) is half its value at the maximum. Note: verify this yourself!
Figure 3.8 shows a comparison of the Gaussian and Lorentzian distributions with equal
values for their means p and half-widths I'.

3.4 Method of maximum likelihood

3.4.1 Calculation of the mean

Consider an observation that comprises a set of N data points, and is presumed to be a ran-
dom selection from a Gaussian parent distribution Pg(z;,u,0). How does one arrive at an
estimate p/ from the data, giving the maximum likelihood that the parent distribution had a
mean equal to u, and what is the error in the estimate p'?

If we hypothesize a trial parent distribution Pg(z;, 4', o), the probability of observing a par-
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Figure 3.8: Lorentzian probability distribution Py (x,u, ) versus x—u, compared to a Gaussian
distribution with the same mean and half-width. Credit Bevington (1969).

ticular value x; for one of the data points is given by

1 1z —p'\?
Pe(zi,p',0) = Wexp [—5 < . & ) ] (3.31)

Considering now the entire set of N observational values, the probability for observing that
particular set is given by

Pty =TT Potousto = (=) e [ (22E) ]

=1

According to the method of mazimum likelihood, when comparing P(u', o) for several values
of p/, the most likely parent population from which such a set of data might have come, i.e.
when P(y/,0) is at the maximum value, is assumed to be the correct one.

The value P(p', o) in equation (3.32) is maximum if the exponential term is minimized, hence:

_Ld (f“_“'>2—0:> —r= Ly, (3.33)
2du’ % o N F=P=N - i '

In practise, some data points might be measured with better or worse precision than others,
this can be accomodated by assigning to each data point x; its own standard deviation oy,
representing the precision with which that particular data point was measured, hence:

1d ;i — 2_ _ Dilwi/a})
ar s (UE) so= i =2 30

The most probable value for the mean is therfore the weighted average of the data points,
each data point being weighted inversely by its own variance.
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3.4.2 Estimated error of the mean

What uncertainty o, is associated with the estimate of the mean p’ in equation 3.347
Each individual variance o? contributes some uncertainty; assuming uncorrelated measure-
ment points z; the accumulated variance 02 of the estimated mean p' follows from:

DY lff? <g—i)21 (3.35)

)

if higher-order terms in the expansion of 02 are neglected. The values of the partial differential
quotients du'/Ox; can be derived from expression 3.34:

o' 1/o} L
Oz Y (1/0?) > (1/07)

If the uncertainties in the data points are all equal, i.e. if 0; = o, the error of the mean
reduces to the simple expression:

— o2 = (3.36)

o2=" (3.37)

Example: Consider the sample displayed in figure 3.3 of a previous paragraph, that comprises
100 measurements. The mean was estimated to be u ~ ' = £=3.045, the standard deviation
was estimated to be 0 &~ s=1.078. Since all the uncertainties ¢ in the individual data points
are equal, the uncertainty in the determination of the mean equals o, ~ s/ V/N=0.108. This
is already substantially larger than the actual error of 0.045.

Important notion: If the discrete values of = in figure 3.3, i.e. the centres of the vertical
bins at 0.25, 0.75, 1.25......, 5.75, are not the exact trial values but merely reflect the lumping
of trial values in bin widths of 0.5 straddling these centre values, the exact numerical results
on the sample mean T and the sample standard deviation s will depend on the selected bin
widths (0.5 in this case)and the bin grid (centre values of x). The choice of the appropriate
bin widths in data acquisition and handling is the subject of optimal sampling, which will be
discussed in Chapter 5.

3.5 Stochastic processes

3.5.1 Distribution functions

A stochastic process is defined as an infinite series of stochastic variables, one for each value of
the time ¢. For a specific value of ¢, the stochastic variable X (t) possesses a certain probability
density distribution. The numerical value of the stochastic variable X (¢) at time ¢ corresponds
to a particular draw (outcome) from this probability distribution at time ¢. The time series
of draws represents a single time function and is commonly referred to as a realisation of the
stochastic process. The full set of all realisations is called the ensemble of time functions (see
Fig.8.1).

At each time t, the stochastic variable X (¢) describing the stochastic process, is distributed
by a momentary cumulative distribution, called the first-order distribution:

F(z;t) = P{X(t) < z}, (3.38)

which gives the probability that the outcome at time ¢ will not exceed the numerical value x.
The probability density function, or first-order density, of X (¢) follows from the derivative of
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Figure 3.9: The ensemble of time functions of a stochastic process.

L3y

F(a;t),
f(z;t) = w (3.39)

This probability function may be a binomial, Poisson or normal (Gaussian) distribution.

3.5.2 Mean and variance

For the determination of the statistical properties of a stochastic process it suffices in many
applications to consider only certain averages, in particular the expected values of X (¢) and
of X2(t).

The mean or average p(t) of X(t) is the expected value of X (¢) and is defined as

—+00

() = B{X (1)} = / z f(z:t) da. (3.40)

—o0

The variance of X(t) is the expected value of the square of the difference of X (¢) and pu(?)
and is, by definition, equal to the square of the standard deviation:

(1) = B{(X(t) — u())*} = B{X*()} — n(¢) (3.41)

(in case of real functions X (¢) and u(t)).

3.6 Intrinsic stochastic nature of a radiation beam

3.6.1 Bose-Einstein statistics

Irrespective of the type of information carrier, e.g. electromagnetic or particle radiation, the
incoming radiation beam in astronomical measurements is subject to fluctuations which derive
from the incoherent nature of the emission process in the information (=radiation) source. For

ol



a particle beam this is immediately obvious from the corpuscular character of the radiation,
however for electromagnetic radiation the magnitude of the fluctuations depends on whether
the wave character or the quantum character (i.e. photons) dominates. By employing Bose-
Einstein statistics, the magnitude of these intrinsic fluctuations can be computed for the
specific case of a blackbody radiation source, which is incoherent or “chaotic” with respect to
time.

In this course we shall not embark on a detailed treatment of these fluctuations, this is a subject
that will be elaborated in the more advanced course Observational Astrophysics 2 (OAF2). It
suffices here to give the outcome of applying Bose-Einstein statistics to a blackbody radiation
field:

e For a photon energy hv < kT, the statistical fluctuations in the radiation beam are
dominated by the wave character of the radiation. If the average radiation power per
unit frequency interval is given by P(v) (e.g. in Watt Hz 1), the variance in this power
is given by:

AP2(v) = P (v) (3.42)
and P(v) = kT (3.43)

The value of P(v) applies to one degree of polarisation!
This case is called the thermal limit for an electromagnetic radiation beam.

e In the other extreme case that hrv > kT, photon statistics prevails and the statistical
fluctuations in the signal can be expressed as Poissonian noise:

AnZ(v) =7a(v) (3.44)

in which 7(v) represents the number of photons in the observation sample. This con-
dition is called the quantum limit of the fluctuations and it represents the minimum
value of intrinsic noise present in any radiation beam. Obviously, this always holds for
corpuscular radiation (cosmic-rays) and neutrinos, since the wave character is not an
issue.

Figure 8.5 shows the subdivision between thermal and quantum noise as a function of tem-
perature. The transition between noise in the quantum limit to the thermal limit occurs at
hv = kET. At room temperature, T' ~ 300 K, this corresponds to a frequency v =~ 6 THz, or
a wavelength A\ = 50 ym. The relation v = kT'/h as a function of temperature T is displayed
in figure 8.5. It is clear from this diagram that radio observations are always dominated by
the wave character of the incoming beam and are therefore performed in the thermal lim-
it. As a result, the treatment of noise in radio observations differs drastically from that of
measurements at shorter wavelengths. Specifically at submillimetric and infrared wavelengths
quantum limited observation is vigorously pursued but this remains still difficult.

The fluctuations in average power P(v), given in equation 8.54 for the thermal limit can
be interpreted in such a way that whenever wave packet interference becomes important, the
interference will cause the fluctuations to become of the same magnitude as the signal. The
low frequency fluctuations can be thought of as caused by the random phase differences and
beats of the wavefields, as described in the following paragraph.

Note:The above expression for the fluctuations in a blackbody photon gas applies only to the
interior of a blackbody in which the receiving element is submerged, i.e. a blackbody cavity
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Figure 3.10: Frequency as a function of temperature: division between thermal and quantum
noise. Credit Lena et al (1998).

or a thermal bath. This requires that the condition \*> = ¢2/v? = A, is satisfied, in which
A, represents the effective collecting area of the telescope and €2 the solid angle subtented by
the radiation source. The expression A€} is called the throughput or ”etendue” of coherence.
(The derivation of this relation and the subject of coherent detection will be treated in detail
later in OAF2). If this condition is not fulfilled, then even in the limit hv < kT quantum noise
may dominate. For example, if a star, whose spectrum resembles a blackbody at temperature
T, is observed at frequency v, such that hv < k7', thermal noise ought to dominate. The
star may however be so distant that the radiation is effectively unidirectional and hence,
A, < \2. The photons will consequently arrive well separated in time and quantum noise
evidently dominates.

3.6.2 Electromagnetic radiation in the thermal limit

In astrophysics, many sources of electromagnetic (EM) radiation have a thermal origin. This
implies that the incoming wave-signal has been built up by the superposition of many indi-
vidual wavepackets, which were all generated by a myriad of independent radiative atomic
transitions at the radiation source. Each wavepacket has a limited duration that depends
on the characteristic time scale of the particular atomic transition. The intrinsic spread in
the frequency of the emitted wavepacket derives from the uncertainty relation of Heisenberg
AeAt = h with spread in frequency Av = 1/At. The characteristic time length of such a
wavepacket At = 7, = 1/Av is called the coherence time, it represents the typical time scale
over which the phase of the EM-wave can be predicted with reasonable accuracy at a given
location in space. Figure8.7 shows the stochastic signal comprising a random superposition
of individual wavepackets. This wave signal fluctuates both in amplitude and in frequency,
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Figure 3.11: A quasi-monochromatic wave.

the latter characterised by a typical bandwidth Av around an average frequency 7. Such a
signal represents a quasi-monochromatic wave with a frequency stability v/Av.

The frequency bandwidth Ar can be accommodated by introducing a complex wave
amplitude' Ey(t) =| Eo(t) | -¢**®), which involves a time dependent phase angle ¢(t). The
electromagnetic wave can then generally be expressed as follows:

E(t) = EO (t) - ei2mt :|E0 (t)| . el (2mPt+9(t)) (3.45)
Taking the real part for one direction of polarisation, this equation becomes
E(t) = Ey(t) cos(2mvt + ¢(t)) (3.46)

The stochastic variable describing the radiation field in the thermal limit is thus represented
by the time variable electric field vector E(t), i.e. X(¢t) = E(t). A full treatment of the
stochastic properties of a thermal radiation field is given in OAF2.
The time dependent behaviour of E(t) is depicted in figure 8.7 representing one polarisation
component of a quasi-monochromatic wave. Points on the EM-wave shown in this figure
separated by more than 7. in time are related to different wavepackets and show therefore no
correlation in phase.

At optical wavelengths, a typical atomic transition takes 7. ~ 107° s, this comprises about
one million oscillations at a typical carrier frequency of 10> Hz, i.e. the fluctuation frequencies
of | Ey(t)| and ¢(t) for quasi-monochromatic radiation are much slower than .

LA tilde is put over quantities that are explicitly used as complex variables to avoid confusion
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Figure 3.12: Double-beam interference from a pair of circular apertures. (a) He-Ne laserlight
(b) idem, but a 0.5 mm glass plate covers one hole (c) idem as (a) but with a Hg-discharge
lamp (d) idem as (b) with the Hg-discharge lamp. Credit Hecht (1987).

Gas discharge lamps possess a large bandwidth, the coherence length
l. is only a few millimeters. In contrast, white light has a frequency
bandwidth Av ~ 300 THz (from 4.5 to 7.5-10'* Hz), the coherence length
only covers a few oscillations. Low-pressure isotope lamps, e.g. 18 Hg
at 546 nanometers and % Kr at 605 nanometers, have a Av ~ 1 GHz;
the frequency stability is 7/ Av ~ 10° and the coherence length amounts
to about one meter. These light sources can therefore be designated as
quasi-monochromatic. Lasers possess a very high degree of coherence,
i.e. Av ~ 20 Hz with a frequency stability of about 10'3.

The effect of the limited coherence length associated with light sources possessing a finite
frequency bandwidth is demonstrated in figure 3.12. Panel (a) shows the interference fringes
when two small circular apertures are illuminated by a He-Ne laser source. Panel (b) shows
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the fringe patters when one of the apertures is covered with an optically flat piece of glas with
a thickness of 0.5 mm. No change in the form of the pattern, other than a shift in its location,
is evident because the coherence length of the laser light far exceeds the optical path-length
difference introduced by the glass plate. On the other hand, when the same experiment is
repeated using the light of a collimated Hg-discharge lamp, the fringes disappear (compare
panel (¢) and (d)). In this case the coherence length of the beam is appreciably shorter than
the optical path difference introduced by the glass plate. Hence, the wavepackets emanating
from the two apertures are uncorrelated and no fringe pattern is formed.

3.6.3 Electromagnetic radiation in the quantum limit

In the quantum limit no coherence effects occur and the radiation field fluctuations can be
described by photon statistics only. Consider an incident radiation beam with an average flux
of 7, photons (or particles or neutrinos) per second. The generation of photons at random
times ¢; can be described by a stochastic variable X (), which consists of a family of increasing
staircase functions, with discontinuities at the the points ¢;, see figure 8.11:

X(t)=> U(t—t) (3.47)
i
with U(¢) the unit-step function

1 fort >0
utt) = { 0 for t < 0. (3.48)

The derivative of the stochastic variable X (¢):
t)

dX(

Y(t) = — = Z S(t —t;) (3.49)

represents a train of Dirac impulses at random time positions #;. The number of photons Xy
registered during a measurement period AT (which is a (small) part of the total measurement

time T'), follows from
tHA

T
Xay = / SO o(t— ti) dt =k (3.50)
t i
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The random variable X a7 is distributed according to a Poisson distribution. The probability
to detect k£ photons, if the mean value is p, is:

uk
prlk, ) =L e (3.51)

with &k an integer value. The (continuous) probability density function for Poissonian statistics
can now be expressed as:

o0
p(z, ) =Y pp(k,p) 6(z — k) (3.52)
k=0
So, the average value of X7 is:
“+oo
E{Xar} = / z p(z,p) dv = p = ny AT (3.53)
—0o0

The variance o2 of a Poisson distribution equals the average yu, i.e. 7, AT, the standard
deviation o is \/f, AT. The signal to noise ratio (S/N) can be defined as p/o = /np AT.
Given an average flux of 7y, the value of S/N thus improves with the measurement period

AT proportional to (AT)%. In an analogous fashion the S/N of the stochastic variable Y ()
1

improves with ﬁg .
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Chapter 4

Physical principles of radiation
detection

4.1 Types of detection

Detection of a radiation field can generally be subdivided in two categories: amplitude detec-
tion and power detection.

4.1.1 Amplitude detection

This type of detection involves the measurement of the instantaneous amplitude of an elec-
tromagnetic wave with average frequency 7 and varying amplitude and phase. Considering
one component of polarisation, the signal S(t) varies as

S(t) = Ey(t) cos(2nvt + ¢(t)) (4.1)

and is obtained by conversion of the electromagnetic field into a current by a receiving antenna.
The relation between the signal and the amplitude of the wave can be regarded as linear,
moreover the phase information ¢(¢) remains available. This detection process is therefore
referred to as coherent detection.

4.1.2 Power (or intensity) detection

In this case the detection process involves the measurement of the average power of an elec-
tromagnetic wave, a particle or a neutrino beam, in which the averaging takes place over a
certain time interval AT, i.e. the detection yields a running average over AT. For electro-
magnetic waves this integration interval AT is large compared to the period of the wave ¢/v,
the signal S(¢) follows from:

t+AT
S(t) = ﬁ / E()- E*(t) dt' = ﬁ I (ﬁ) « | E(t) (4.2)

If the electromagnetic wave is regarded as a photon beam, the equivalent expression is:

t+AT
S(t) = — n(t') dt' (4.3)
/



in which n(¢') represents the photon flux. This relation also applies to corpuscular radiation
(cosmic rays) and neutrinos. As discussed in Chapter 3, n(t’) relates to a Poisson process. If
the time interval AT is taken sufficiently small, equation 4.3 reduces to single photon (particle)
counting.

In this course no detailed treatment of the mechanism of amplitude detection will be given,
however in the following paragraphs the physical principles of photon, particle and neutrino
detection will be briefly reviewed, since they underly the working principles of a large variety
of radiation sensors.

4.2 Detection of electromagnetic radiation

4.2.1 Opacity, cross-section, Kirchhoff’s law

Consider a beam of electromagnetic radiation with monochromatic intensity I (e, 0) at normal
incidence on a layer of absorbing material (e.g. a detection element). The absorption in an
infinitesimal layer ds within the absorber at depth s can be derived from the relation:

I(e,s +ds) —I(e,8) = —dI(e,s) = I(e,s) ke, s) ds (4.4)

The parameter k(e, s) represents the probability per unit path-length that a photon is either
absorbed or scattered. In general k(e,s) is a function of the position s, but for a uniform
homogeneous absorber k(e,s) = k(e), independent of s. k(e,s) is commonly referred to as
the (volume) opacity or total absorption (extinction) coefficient of the relevant medium. Also
k(e,s) = [I(e,s)] !, in which I(e, s) represents the mean free path of a photon with energy e.
In practice a related quantity

k(€e,s) = k(e, s)/p (4.5)

is often used, where p is the specific mass. (e, s) is called the mass absorption coefficient in
units of surface area per unit mass (e.g. m?kg™!). The absorption coefficient per atom for a
uniform absorber follows from:

ole) = ——— (4.6)

where A, represents the atomic mass and Ny Avogadro’s number. The quantity o(e) (or o(\),
or o(v)) is called the absorption (scattering) cross-section and needs to be used when describ-
ing the microscopic properties of an absorbing medium. The volume opacities k(e), k(X), k(v)
are usually applied when treating radiation transport phenomena on a macroscopic level, such
as stellar atmospheres.

Integration of equation 4.4, taking a total absorption length s, yields the attenuated beam
intensity (e, so) after passing through so:

I(e,50) = I(€,0) exp (—/k(e, s) ds) = I(e,0) exp(—7(€, s0)) (4.7)
0

in which
S

(e, s) = / k(e,s') ds' (4.8)
0

represents the optical depth.
In order to understand the absorption potential and properties of various materials, it
is necessary to treat the nature of the physical interaction processes which give rise to this

60



absorption effect. In addition, the associated interaction products need to be assessed, since
they comprise the conversion products which make up the physical signal at the detector
output.

Basically the detection mechanisms for electromagnetic radiation can be divided into two
major subclasses: photo-electric devices and thermal devices.

Photo-electric devices detect radiation by direct interaction of the individual photons with
the atomic structure of the material (or with the free atoms in a gas). This can be quantita-
tively described with the aid of the linear absorption coefficient k(e, A, ) or the cross-section
o(e, \,v) as discussed in this section. This interaction of radiation with matter produces
parameter changes that can be detected by associated circuitry or interfaces. Physical pa-
rameters that can change in these devices due to irradiation comprise resistance, inductance
(due to charge generation), voltage and current.

Thermal devices respond to the “heating” effect of the incident radiation field by chang-
ing their temperature. This process requires two steps: the radiation field changes the tem-
perature of the absorber and subsequently this temperature change causes or induces some
measurable parameter change. The absorption characteristic of a thermal device is normally
expressed by the so-called absorptance a()\). Kirchhoff’s law for electromagnetic radiation
states that in thermodynamic equilibrium the amount of energy absorbed is equal to the
amount of energy emitted. Therefore, for all surfaces:

a(\) = E(N) (4.9)

with £ the spectral emissivity and «()) the ratio of the amount of radiation absorbed to the
amount of radiation incident monochromatically:

(L(X)) abs
(I(A))incid

A blackbody has a spectral emissivity £(A) = 1 and therefore absorbs all incident radiation,
it can reflect no light and, hence, appears black.

In the following paragraphs the physical processes underlying thermal and photo-electric
detection are briefly discussed.

a(d) = (4.10)

4.2.2 Thermal detection

Thermal sensors are devices where the energy absorbed depends often on the surface properties
of the material involved. The spectral response is determined by the spectral dependence of
the surface absorptance:

I(Aa T)material

a(A’T) = S(A’T) - I()\,T)blackbOdy

(4.11)

The energy transfer process can be regarded as a conversion of the radiation energy into
mechanical energy of lattice vibrations in the target material, i.e. conversion into phonons:

€ = hlpgg — Z(hl/s)i (4.12)

in which hvg represents the characteristic phonon energy (~ kT qteriar). Values of “thermal
mass” (= specific heat x mass) and thermal conductance are basic parameters for a thermal
device and determine its response time. Thermal detectors are typically slower responding
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devices than photo-electric sensors since their thermal mass must experience a rise and fall of
temperature. A large temperature change per unit radiation power requires a small thermal
mass or a well-isolated detector. Consequently the heat injection due to the radiation field
will not dissipate very fast and the decay time becomes relatively long.

In addition the spectral response for a thermal device is much broader than a typical
photo-electric sensor and extends into the far-infrared (up to several hundred micron). Some
examples of a thermal sensor that produce a change in electrical parameter are:

Device: Physical parameter change
Bolometer — resistance

Thermocouple — voltage

Pyroelectric — capacitance in ferro-electric material
Super-conductor — resistance

4.2.3 Photo-electric detection
The photo-electric effect

Consider first photo-electric absorption by free atoms (e.g. gases). The absorption of the
photon up to energies of 10 to 100 keV (depending on the Z of the target atoms) takes place
through the so-called photo-electric effect. This entails a destructive process in which the
incident photon releases an electron from the parent atom:

e=W.+ %va (4.13)
with W, the required ionisation energy. The surplus energy of the photon is converted into
kinetic energy of the so-called photo-electron. The atomic cross-section oy, (€) for this process
displays a number of characteristic features (the absorption edges) which correspond to the
binding energies of the target atom, see figure 4.1, showing the atomic cross-sections for
the noble gasses Argon and Xenon and displaying the absorption edges at the L- and K-shell
ionisation energies. These absorption features show that the photo-electric effect is, classically
speaking, a resonance process. For energies above the K-edge, up to € ~ mc?, ope(€) can be
obtained from the Born-approximation:

moc? 7/2
opel€) = 4V2 op Z° o ( ¢ > (4.14)

€

in which o7 is the Thomson cross-section (see equation 2.16), Z is the atomic number of the
target material and « is the fine structure constant (o« = 1/137). The process is strongly
dependent on Z (~ Z°) and on the photon energy e (~ e¢~7/2). The Born-approximation is
not valid near the absorption edges.

In practise, most detection elements are solids and, apart from the innermost energy levels,
the collective properties of the lattice structure has to be taken into account.

Figure 4.2 shows the orbital and energy-level diagram of a single atom in a highly schematic
fashion. Figure 4.3c shows the energy-level diagram for a crystal containing several atoms.
The innermost levels are so energetic that they normally do not interact. However, the
outer levels interact and form a so-called band structure, figure 4.3a,b shows the subdivision
of various energy levels as a function of lattice spacing for a hypothetical substance. Two
important band structures emerge: the valence band and (directly above it) the conduction
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Figure 4.1: Cross section ope(€) as a function of energy.

band. The valence band represents the group of states containing the valence electrons of
the atomic solid and determines the chemical properties. Both bands together determine the
electrical properties of the solid. The valence and conduction band may be separated by a
forbidden energy band AE = E,, because electrons can not exist in the crystal with these
energies.

Metals do not possess an energy gap, semiconductors have energy gaps of the order of 1 eV
and insulators of the order of 10 eV. Photons of sufficient energy incident on a semiconductor
material may therefore excite electrons from the valence band into the conduction band. In
this way free charge carriers are added to the conduction band which raises the materials
conductivity proportional to the incident radiation flux (see figure 4.5). The linear absorption
coefficient k(e€) for three well-known semiconductor materials, Si, Ge and GaAs, are displayed
in figure 4.4, some more of these so-called intrinsic semiconductors, including infrared sensitive
materials, are listed in table 4.1.

It is clear from the energetics of this process that photons with energies below the bandgap
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Figure 4.2: Orbital and energy level diagram of an atom. Only relative positions and energies
are shown. Credit Greiner (1961).

cannot be detected, this manifests itself as a long-wavelength cut-off A, in wavelength response:

1.24

Ae = E4(in eV) pm (4.15)
To get a longer wavelength response towards the infrared region, a smaller energy gap is
needed. By doping the intrinsic semi-conductor material with alien atoms, donor- or acceptor-
levels can be introduces in the energy level diagram of the band-structure (see figure 4.6). A
donor-level is located just below the conduction band, so photons in the mid- and far-infrared
wavelength range can introduce extra electrons in the conduction band. This material is called
a n-type semiconductor. An acceptor-level corresponds to an energy just above the valence
band and can accept an excited electron, leaving a hole in the lower band. This hole acts like
a positive charge carrier, just like an electron in the conduction band. This material is called
a p-type semiconductor. Together these doped materials are called extrinsic semiconductors
and they need to be cooled to prevent ionisation by thermal excitation due to the ambient

temperature field; see table 4.1 for some examples.
The photo-electric effect in solids just described, influences the conductivity (and hence,
the resistance) of the material concerned, which can be employed to generate an electrical

64



=
38 band
38
% 7
T 2P T
2P band
5 Hﬂﬂ] i
* 28 28 band
- NN NN
18 18 band
Ro ,
Lattice spacing R —> Distance —
(a) (b)
\W 7 Conduction band 7 7/

Forbidden energy gap

Inner
orbits

Figure 4.3: Energy level diagram for a crystal containing several atoms. (a) levels as a function
of lattice spacing R. (b) levels for a particular level spacing Ry. (c¢) (lower plot) conduction
and valence band in this crystal. Credit Greiner (1961).

signal, since the generated charge carriers do not leave the solid. This interaction process is
referred to as the internal photo-electric effect. emission.

Complementing this interaction process is the external photo-electric effect. In this case
the radiation-excited electron in the conduction band (metal or semiconductor) physically
leaves the detecting material and moves in free space. This is illustrated in figure 4.7, where
a so-called photo-cathode is the absorbing medium. The photon is absorbed in the photo-
cathode material that has been deposited on an optically transparent substrate. The photo-
electric interaction can produce an energetic electron that has sufficient energy to overcome
the work-function of the cathode material. The electric potential represented by the work-
function is the difference between the electric potential of the conduction band and the outside
(=vacuum) electric potential. If the electron is released from the surface it can be captured in
an electric field and adds to a current signal. The photo-cathode material should preferably
have a high k(e) combined with a long mean free path for the photo-electron to leave the
material (helped, of course, by a low value of the work-function). Table 4.1 lists several
photo-cathode materials that are sensitive for optical and near-infrared radiation.

In the case of very energetic radiation, like X-ray and gamma-ray photons, the atomic
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Figure 4.5: Intrinsic semiconductor energy level diagram. Credit Dereniak € Boreman (1996).

cross-section is still applicable for solids since the photo-electrons are emitted from the inner-
most orbits, which are hardly influenced by the atomic lattice structure. Figure 4.8 shows
some values of k(€) for these photon energies, starting from 10 keV, and it also shows that at
higher photon energies other interaction mechanisms start to become dominant, i.e. Compton
scattering and pair production. These will be shortly discussed in the next sections.

Not all photo-electric interactions need to result in free charge carriers. One alternative
is that the photo-electron energy may be quickly thermalised through interaction with the
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Material Typical Ac Nominal
efficiency (pm) temp. (K)

Intrinsic CdS 0.50 0.52 300
semiconductor CdSe 0.50 0.69 300
Si 0.50 1.1 300
Ge 0.50 1.9 300
PbS 0.50 3.0 300
PbSe 0.50 5.4 300
HgCdTe 0.60 25 7
Extrinsic Na,KSb 0.21 0.36
semiconductor Cs3zSb 0.16 0.38
Na,KSb-Cs 0.22 0.38
K>CsSb 0.27 0.38
Cs35b-0O 0.19 0.39
CsSb-0O 0.23 0.41
BiAgO-Cs 0.068 0.42
AgOCs 0.004 0.8
Si-In 0.40 8 45
Ge-Hg 0.30 14 4
Si-Ga 0.40 19 18
Si-As 0.40 24 4
Ge-Cu 0.30 27 4
Si-P 0.40 29 12
Ge-In 0.30 120 4
Photo-cathode GaAsP 0.30 0.9
(IR-sensitive)  Cs-Na-K-Sb 0.20 0.9
Ag-0-Cs 0.01 1.1

Table 4.1: Cut-off wavelength of some semiconductor and photo-cathode materials.

crystal lattice, resulting in vibrations and sound waves in the lattice. These waves act like
particles and are called phonons and can again be measured as a thermal signal.

Another alternative is the creation of so-called activation centers in inorganic crystals
by adding certain impurities that give rise to a number of intermediate energy levels in the
forbidden energy gap between the valence and conduction band. De-excitation of electron-hole
pairs created by an energetic photo-electron through these intermediate activator levels results
in photon production at much lower energies than the original incoming photon. These low
energy photons can be in the visible range if the impurities are properly chosen. This optical

68



10°

10°

ABSORPTION COEFFICIENT (cm ™)

10
0.01 0.1 10 10 100

PHOTON ENERGY {MeV)

Figure 4.8: Absorption coefficients as a function of the photon energy for materials used for
X-ray and gamma-ray absorption. Compare figure 4.1 and 4.4. Credit Middelhoek € Audet
(1989).

photon emission during de-excitation is called scintillation. If the main solid is transparent
for this scintillation light, the light can be detected by a photo-cathode and converted into an
electric signal. This is the principle of scintillation sensors. The total energy yielded in the
low-energy scintillation light is a measure of the incoming X- or gamma-ray photon energy.
Examples of some inorganic scintillators are given in table 4.2, the activating impurities are
given in parenthesis.

Compton scattering

This process has already been discussed in Chapter 2. The cross-section o.(€) in the extreme
relativistic limit (e > mc?) follows from the Klein-Nishina formula (2.20):

3 2 2 1
ocle) == or % (ln—6 + —> (4.16)
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Material Wavelength Decay Index of
of maximum constant refraction

emission (us) at Amax
Amag (nm)
Nal(T1) 410 0.23 1.85
CsI(Na) 420 0.63 1.84
CsI(T1) 565 1.0 1.84
Lil(Eu) 470 — 485 1.4 1.96
ZnS(Ag) 450 0.20 2.36
CaF;(Eu) 435 0.9 1.44

Table 4.2: Properties of some inorganic scintillators.

in which the atomic electrons are considered to be essentially free (W, negligible). The atomic
cross-section for a target material with atomic mass A,, follows simply from:

Am(e) = o.(€)Z (4.17)

with Z the atomic number. This process is therefore proportional to Z (compare ~ Z° for the
photo-electric effect). Moreover, since this process is a scattering process, the full detection of
the photon-energy requires an interaction cascade: the primary photon is successively down-
scattered in energy until it is sufficiently reddened to be captured by the photo-electric effect.
Figure 4.8 shows k(e) for a few commonly used detection materials.

Pair production

Pair production is a typical quantum theoretical process. It can be envisaged as a photo-
electric effect with an electron of negative energy in the Dirac-electron sea (virtual electron).
The result of this interaction causes the disappearance of the photon (destructive) resulting
in an electron-positron pair (charge conservation), both having a positive energy.

The materialisation process can only be initiated in the strong electric field of an atomic
nucleus, the latter takes care of the momentum balance, but gains negligible energy. The
energy balance can therefore be written as:

e = 2mc® + (Epin)et + (Bhin)e- (4.18)

The theoretical threshold energy is e = 2mc? = 1.02 MeV, in practise this turns out to be
considerably higher before any measurable efficiency becomes apparent. For energetic gamma-
rays (> 70 MeV in hydrogen and > 24 MeV in Fe) the cross-section for this process reduces
to

Ty 183 ) (4.19)

4
O'p(E):EZ(Z—FI) ’I"g <§lnm

with ry the classical electron radius. For the higher Z elements pair production is thus
proportional to Z? and independent of the incident photon energy e. In practise the mass-
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Figure 4.9: The relative importance of different forms of energy loss mechanisms for vy-rays
as a function of photon energy and atomic number. Credit Longair (1992).

absorption coefficient is always used:

Na T
kp(e) = A, (op(€) = 9 Xy (4.20)
with
X—(i&Z(ZJrl) 2 §>1 (4.21)
0= \137 4, o M7 '

As can be seen from this equation, Xy only depends on the material properties under consid-
eration and not on the photon energy e. Xy is called the radiation length in units of kg-m—2,
and is a standard parameter in high-energy y-ray astrophysics. It really is a mass absorption
coefficient with the same units as a surface density, but after multiplication with the density
it becomes a length scale.

The radiation length is then used to characterise the absorbing medium: the attenuation
is given by:

I(z) = 1(0) exp (—g Xi()) (4.22)

Numerical values for largely different Z are

Xo~6gem 2 —5 53mm for alead slab
Xo~62gcm? — 7km for hydrogen at 1 bar

Figure 4.9 summarizes the relative importance of the three major types of photo-electric
radiation absorption. The solid lines show the values of Z and e for which the two neighboring
effects are just equal.

Reflection and refraction

In the previous sections the physical principles of thermal and photo-electric absorption have
been described. If a radiation beam arrives at the interface between two media with refractive
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indices n; and n;, Fresnel’s laws apply giving the relation between the intensity of the incident,
the reflected and the transmitted (=refracted) beam. This is relevant for low energy photons
and plays an important role in the overall efficiency of the detection process since reflection
losses at the interface may be substantial. Since Fresnel’s laws are extensively treated in any
standard textbook on optics, this subject will not be elaborated in this course.

4.3 Neutrino detection

The mean free path for neutrino detection

Me) = - (;) - (4.23)

is extremely long due to the exceedingly small value of the nuclear cross-section o (e, ) for the
interaction process. For the highest electron-neutrino energies, o(€,, ) for capture in chlorine
amounts to ~ 1074 m?, yielding a A ~ 1 parsec in pure %;Cl.

The neutrino capture reaction in chlorine can be written as:

ve + 3Cl — 3Ar 4+ e (4.24)
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The threshold energy for this reaction to occur is €,, = 0.814 MeV. This is greater than the
maximum energy of the electron neutrinos generated in the main p-p chain in stellar interiors,
but smaller than that of those produced in the decay of 8B, see figure 4.10.

In the deep mine of the Home-state Gold Mining Company (South Dakota), the radio-
active 3" Ar is generated in about 600 tons of perchloro-ethylene C,Cly. The incoming electron
neutrinos release the 3’Ar from the molecule and they can be flushed out of the fluid by
passing He through the volume. The 37Ar decays with a half life of 34.8 days by capturing
one of the inner orbital electrons (electron capture, EC). The photon which is released by this
process is used to expel one of the outer electrons and ionise the atom. This free electron is
called the Auger electron and has a fixed energy of 2.82 keV:

MAr + EC — T 4+ e (2.82keV) (4.25)

This low-energy electron is detected in a sensitive gas proportional counter.
The Kamiokande experiment (Mitsui Mining Company in Japan) uses an active volume
of 3000 tons of very pure water. The neutrino produces an energetic electron by scattering:

/

v + e — v, + ¢€ (4.26)

This electron will move with a speed greater than the local speed of light. Due to the abrupt
change of the electric field the surrounding atoms will emit radiation. This so-called Cerenkov
radiation can be detected and also provides some directionality information due to the forward
beaming of the cone of Cerenkov emission. As indicated with vy, this technique has also some
sensitivity for the detection of v, and v;. The scattering probabilities are:

D) % pa(vr) ~ = py(we) (4.27)

7
Two other large neutrino experiments entail the SAGE (Soviet-American Gallium Ex-
periment) and the GALLEX (Gallium Experiment) located in the Gran Sasso Underground
Laboratory in the Italian Appennino Mountains, which comprises a collaboration between
Europe, the United States and Israel. These experiments make use of the reaction:

Ve + 5Ga — IlGe 4+ e (4.28)

The threshold energy for this reaction is approximately 0.233 MeV which allows the large flux
of low energy neutrinos emitted in the p-p process to be detected.

GALLEX employs 30 tonnes of gallium used in an aqueous solution of gallium chloride
and hydrochloric acid. The "*Ge decays with a half lifetime of 11.4 days by electron capture:

%Ge + EC — I1Ga™ 4 e (10.37 keV) (4.29)

The Auger electron is again measured in a sensitive gas-filled radiation sensor.

SAGE uses 60 tonnes of solid gallium, located in the Caucasus mountains (Baksan Valley).
Heating melts the gallium and flushing with hydrochloric acid brings out the volatile GeCly.
No firm results are yet available.
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Both the Kamiokande experiment in Japan and the IMB detector in the
United States have seen a neutrino pulse from the supernova explosion in
the Large Magellanic Cloud SN1987A on February 23th, 1987. During
the collapse of the core of the progenitor star, about 10°® neutrinos were
emitted. Of these neutrinos 20 were detected in the water detectors
mentioned above, see figure below. Precisely on that day there were
problems with the Japanese electricity net, due to which the clocks were
not completely synchronised with Universal Time. Hence, the arrival
times of the neutrinos detected with Kamiokande have an uncertainty
of about 60 seconds.

The IMB detected the first neutrinos at 07:35:41. At 09:22 Jones did not
observe any new star, at 10:38 the first optical picture of the supernova
was made by Garrad and McNaught, but they did not develop their film
immediately. Only in the following night Shelton and Duhalde were the
first to see a supernova in 383 years with their naked eye.
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An important recent development has been the completion and operation of the Sudbury
Neutrino Observatory (SNO)in Ontario, Canada. This neutrino detector has been built two
kilometers underground, the detection principle is based on neutrino interaction with the
Deuterium nucleus in heavy water. Three reactions are possible:

Ve + 2H — p +p + e (4.30)
v + H — p +n + 1 (4.31)
v + e — v + e (4.32)

The neutrino absorption in the first reaction only applies to electron-neutrino’s, the other
reactions, i.e. the deuteron break-up and energetic electron scatter respectivily, apply to any
type of neutrino (vy). In the deuteron break-up reaction, the nucleus splits into its constituen-
t components, i.e. a proton and a neutron, the neutron eventually recombines with another
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Figure 4.11: Enerqgy loss rate due to ionisation losses for cosmic-ray particles. Credit Longair
(1992).

deuteron, releasing a gamma-ray photon that , in turn, knocks-on an energetic electron. The
energetic electrons are all detected by the emission of Cerenkov light. The deuteron break-up
reaction measures the total flux of all neutrino flavours above a threshold energy of =~ 2.2
MeV, consequently the detector is sensitive to the ®B solar neutrino flux (see figure 4.10).
The detector comprises a volume of 1000 tons of heavy water, viewed by more than 9500 pho-
tomultiplier tubes, held on an 18-meter geodesic sphere, that measure the emitted Cerenkov
light cones. The different reactions can be separated by the different energy distributions and
emission geometries of the energetic electrons. Recently, 2 kilotons of NaCl (salt) was added
to enhance the efficiency of neutron-capture after the deuteron break-up reaction.

The most recent results of this instrument have convincingly demonstrated that solar neutri-
no’s indeed change ”flavour” on there journey from the solar interior to the earth, i.e. that
phase transitions occur between ve, v, and v, neutrino’s. This is not in agreement with ”the
standard model” in physics, and implies that neutrino’s have at least some mass. This result
also solves the almost 30 years standing problem of the so-called deficit in the solar neutrino
flux, namely that the number of electron neutrino’s observed appeared to be only one-third
to one-half of the flux computed on the basis of standard stellar nuclear fusion models.

The estimated flux density of electron neutrino’s is (1.59 £ 0.08) 105 cm~2s~ !, the total neu-
trino flux density amounts to (5.21 £ 0.27) 10° cm=2s~!. The latter value is very close to the
flux density derived from current models of stellar evolution.

4.4 Cosmic-ray detection

Cosmic-ray particles lose energy by ionisation when traversing matter. The ionisation loss
per unit path-length is given by relativistic quantum theory and is known as the Bethe-Bloch
formula:

I

dr de 4mredmev?

dE  dBy  Z’¢'nZ 2y’ mev®\ v
_ dBg _ qnoll<7mv - | = 221 (4.33)

with Zg the charge of the cosmic-ray particle under consideration, n the atomic density of the
target material, Z; its atomic number, I the average ionisation potential and v the particle
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Figure 4.12: Stopping power per unit mass length in various materials as o function of the
Lorentz factor vy, kinetic energy and momentum (inset). Credit Longair (1992).

velocity. The formula indicates that the energy loss depends only on the velocity of the
particle and on its charge, given a medium characterised by nZy. The velocity (or energy)
dependence is shown in figure 4.11. Up to velocity v ~ c¢ or kinetic energy Ej;, ~ Ammpc2
the ionisation loss decreases as v—2 or Ek_zil For energies around Ammpc2 there is a minimum
in the ionisation loss: a particle with this kinetic energy is designated as a minimum ionising
particle. At higher energies the ionisation loss slowly increases again proportional to In(vy?).
The quantity dFE/dx is often referred to as the stopping power of the material. This power
can also be expressed in terms of the mass per unit area traversed by the cosmic-ray particle

(equivalent to the mass-absorption coefficient for electromagnetic radiation x(e). With £ = px
(in kg m~2):

- —_ ar _ Z2nZof(v) = Z
dé dv  d€  nAgm, of(v) =271 (”)Aomp

(4.34)

The ratio Zy/Agm, is rather insensitive to Z for all stable elements, it varies from 1/(2m,)
for light elements to 1/(2.4m,) for uranium. Thus, the only variation of the energy loss from
element to element is the variation in I. Figure 4.12 shows —dFE/d¢ as a function of kinetic
energy per nucleon (expressed in terms of v — 1, see equation 2.59) for singly charged (protons
and electrons) and doubly charged (He-nuclei) particles for several target materials. Despite
the wide range of values of I for those materials, it can be seen that the curves lie remarkably
close together for singly charged particles, this is due to the logarithmic dependence on /. This
means that the quantity (dEy;,/d€)/Z? is almost constant and if the energy loss dEy;,/d¢
is measured as a function of the kinetic energy Ey;, of the particle, the charge Z (the only
variable left) can be measured. Moreover, the minimum ionisation loss occurs at a Lorentz-
factor v ~ 2 and can be well approximated for any species by 0.2Z% MeV (kg m~2)~1. If this
energy loss is measured the relativistic movement of the particle is ascertained.

In the astrophysics of the origin and propagation of cosmic-rays, the isotopic abundances
are of fundamental importance. The differences between isotopes of the same species only
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Figure 4.13: Energy loss rate as a function of kinetic energy and isotope mass. Credit Longair

(1992).

becomes apparent if the total kinetic energy of the particles is measured. The ionisation
loss —dE/d¢ is independent of the total particle mass A,,m,, but the total kinetic energy
Egin = (v — l)Ammpc2 depends linearly on A,,. Isotopes of the same element can therefore
be distinguished in the dE/d¢ versus Ej;, diagram by a slight displacement of the curves for
ionisation loss relative to one another. This is schematically shown in figure 4.13.
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Chapter 5

Characterization of instrumental
response

5.1 Characteristic parameters

Characterization of the performance and response of a physical measurement system can
be achieved by considering a multidimensional parameter space, in which each coordinate
axis relates to a specific instrument parameter that has a major influence on the quality of
the measurement. For astrophysical observations these parameters comprise, among others,
bandwidth, field of view, precision and resolution, limiting sensitivity.

In the following paragraphs a brief description of these parameters is given. It should be
kept in mind, however, that a certain “bandwidth” in the definitions of these parameters is
inevitable and due account must be taken of their exact meaning in a particular observational
context.

5.1.1 Bandwidth (symbol: A\, vv, or €e)

The bandwidth, or rather spectral bandwidth, is defined as the wavelength (or frequency, or
energy) interval over which the instrument has adequate detection efficiency, i.e. over which
it is observationally employed. The long and short wavelength cut-offs are derived from
the wavelength dependent detection efficiency, which is governed by the physical interaction
process (see chapter 4). The precise criteria for choosing the cut-off values are mostly rather
arbitrary, e.g. cut-off is defined at 50 % or 10 % of the value of maximum efficiency in the
bandpass.

5.1.2 Field of view (FOV, symbol: Qzov)

The field of view is defined as the solid angle subtended on the sky by the selected telescope
configuration. If the effective area of the telescope is a continuously declining function of the
off-axis (optical axis) angle, the choice of the effective FOV is somewhat arbitrary (like in the
case of spectral bandwidth), e.g. decline to half the maximum sensitive area (FOV at Full
Width at Half Maximum (FWHM)) or to zero sensitive area (FOV at Full Width at Zero
Response (FWZR)). The effective FOV is also dependent on the angular resolution which is
required for an observation: due to the potential decline of the image quality with off-axis
angle not the whole field of view may qualify for a particular observation.
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Figure 5.1: Precision and resolution. The top panel shows that precision is the accuracy with
which the centroid of a point (line) spread function can be determined. The panel below shows
that the resolution is the interval which two signals of equal strength should be apart to be
recognised separately. It is harder to resolve a weak signal adjacent to a strong one (panel
below). The bottom panel shows the deterioration of precision in the presence of noise. Credit
Harwitt (1984).

5.1.3 Precision and resolution

First of all, it is important to make a proper distinction between precision and resolution.

Precision

Precision represents the accuracy with which the exact value of a certain quantity can be
established. In astrometry precision reflects the ability to accurately measure the position of a
star, in spectroscopy precision reflects the ability to accurately pin down the exact wavelength
(or frequency, or energy) of a spectral line. The precision of which an instrument is capable
may substantially exceed its resolution.

For example: a point source of radiation. The image is blurred by the finite angular
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resolution of the telescope, however if this blur is more or less symmetical in shape, the centre
of the image can be determined with substantially higher precision than the spot size (see
figure 5.1). The ultimate positional accuracy will be governed by the brightness of the spot
with respect to the sky background, by instrumental noise sources and by a potential off-set
between the measured position and the true position as a result of systematic errors. An
example of such a systematic error is the misalignment between the telescope axis and the
attitude reference system in a space-based astronomical observatory. The optical axis of the
star sensors provide the attitude information and consequently the pointing position on the
sky and may be slightly misaligned with the main telescope axis due to thermal gradients
in the spacecraft. Of course, this can be calibrated on celestial sources visible in both the
main telescope and the optical reference sensors, but presumably not always. Consequently,
for high absolute position accuracies, this “bias” error may be non-negligible compared to the
statistical spread in the centroid determination of the point source image. The final accuracy
to which a position can be derived is sometimes referred to as position resolution, not to be
confused with angular resolution (see later).

Suppose that the measurements of the stochastic variable X are nor-
mally distributed about the true value p with width parameter ox. N
independent measurements of X are done and the average is calculated:

- X4+ X
X= % (5.1)
The standard deviation in the mean is:
J 0X ? oX ’
o ()

1 2 2

= \/(NUX> +"'+<NUX>

= ZX (5.2)

So the width of the Gaussian curve will reduce by the square root of the
number of measurements, which is shown in the following figure for the
case of N = 10 (Credit Taylor (1982)):

width o= = ¢, A/10
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Another example is the timing precision (symbol: Atyys = taps — Lobservatory ), Which equals
the difference between the measured time and true time. The absolute timing accuracy is par-
ticularly important for synchronisation of periodic phenomena over time series with repeated
interupts (satellite data) or over different observations. For example in pulsar observation-
s, the period of a pulsar (and other parameters like period derivative or orbital period and
orbital period derivative in case of a binary) can be determined to a much higher precision,
when two observations at different times are synchronised: i.e. the exact number of pulse
periods between the two observations should be known. From the time of arrival of the pulse
at the first observation and the predicted period (and period derivative etc.) a prediction is
made of the time of arrival of the pulses in the second observation. From the deviation of
the measured time of arrival a better value of the period (and period derivative etc.) can be
determined. (The absolute time of an observation is usually determined by comparing the
observatory maser clock with a GPS system (Global Positioning System) which is locked to
Univeral Time (UT) determined by the world’s best atomic clocks.)

Resolution

Resolution (or resolving power) represents the capability of measuring the separation between
two closely spaced features, e.g. two spectral lines or two point like radiation sources. The
following resolutions are commonly used in astrophysical data:

e Angular resolution (symbol: Af)
This is defined as the minimum angular separation needed between two equally bright
point sources to ensure that they can be individually just separated (“resolved”).

If an angle of A@ radians can just be resolved, the angular resolving power is

1
Ry = 5o (5.3)

e Spectral resolution (symbol: A\, Av or Ae)
This is defined as the separation in wavelength (or frequency, or energy) between two
spectral lines of equal intensity, that is just large enough to resolve the lines individually.

The spectral resolving power is the ratio of the wavelength A at which the observation
is carried out, to the wavelength difference AX which can just be resolved:

A v €

Rs = AN~ 20~ Ae

(5.4)

e Charge and mass resolution (symbol: AZ and AA)
These characteristic parameters are relevant for the measurement of the composition of
a particle beam (e.g. cosmic-rays). It is defined as the fractional charge and mass which
can just be separated by a particle telescope.

The charge and mass resolving power is the ratio of the charge Z, mass A, which is
being measured, to the charge difference AZ, mass difference AA, which can be just

resolved:
A
A
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e Temporal resolution (symbol: At)
This parameter can be defined as representing the minimum time interval between two
consecutive samples of a realisation of a stochastic process for which these samples can
be regarded as uncorrelated (independent) at the output of the measuring device.

It is important to realise that the characteristic resolution parameters defined above, apply
to closely spaced features of comparable strength. If, for instance, a faint star lies very close
to a brighter companion, or a faint spectral line lies near a far brighter spectral feature, the
two may not be separable with a given resolution, even though a pair of equally bright stars
or spectral lines would be easily resolved at the same separation.

5.1.4 Limiting sensitivity [symbol: (F(\,v, €)min]

The limiting sensitivity achievable with a specific observation facility is defined as the min-
imum value of the monochromatic flux density arising from a celestial point source, that
can be detected significantly over a certain measuring period 7' in a predefined wavelength
(frequency, energy) interval.

This parameter is a function of the effective telescope area A.ys, integration time 7" and
angular resolution Af, moreover it may strongly depend on sky position (background light)
and instrumental noise (potentially variable). If the nature of the radiation source is truely
diffuse in origin, like a cosmic-ray beam incident on a particle telescope, the collecting power of
the instrument is normally related to the so-called geometry factor or grasp. This parameter
is defined as the telescope effective area integrated over the FOV of the telescope:

GF = Acpyp dS2 (5.7)

Qrov

Derivation of expressions for the limiting sensitivity will be discussed in some detail in chapter
6.

5.1.5 Polarisation sensitivity (symbol: II,,;,)

The information carried by the polarisation of electromagnetic radiation is important, since
it characterizes the physical conditions of the emission region. The polarisation is defined by
using four so-called Stokes parameters. The detection system may only be sensitive to one
polarisation component (such as a radio dipole antenna) and the telescope (optics, waveguides)
may potentially alter it. The polarisation sensitivity is therefore defined as the accuracy to
which the Stokes parameters can be measured.
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Consider a monochromatic wave. This wave is always fully elliptically
polarised and can be seen as a superposition of two orthogonal linearly
polarised waves. In the following figure (taken from Rohlfs (1986)) the
electric vector is drawn. £ and n are the major and the minor axes of
the ellipse, x and y are the directions of the dipole receivers.

AY
n\

c, ? P

T E

E, and E, are the observables. They are oscillating with the same
frequency v but with a phase difference 6. If 6 > 0 we call the wave
right-handed polarised.

But in general the major axis & and the minor axes n of the ellipse do not
coincide with the x- and y-dipoles of the receiver. The relation between
the two coordinate systems is given by a simple linear rotation

E¢ = Eq,cos(1+9) = Egcosy + Eysing
E, =Epsin(t +6) = —E;siny +FE,cosyp (0 <1 < 7)(5.8)

in which 1 is the angle over which the {-axis is rotated with respect to
the z-axis. Another angle x can now be defined:

) (5.9)

N | —

E,
t =% (0<y<
anx =g (0<x<
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In 1892 Poincaré showed that there exists a one-to-one relation between

polarisation states of a wave and points on a sphere with radius E? —{—Eg.

The angles 21 and 2x can be seen as the longitude and the lattitude of

the sphere. The three coordinates of each point are the Stokes param-

eters Q, U and V, see the following figure (taken from Rohlfs (1986)).
A

=

Points on the equator represents linear polarised waves (V = 0), the
north pole represents a right-circular polarised wave and the south pole
a left-circular. The Stokes parameters are defined as

I = E:+E} (5.10)
Q = Icos2ycos2y (5.11)
U = Isin2ycos2y (5.12)
V = [Isin2y (5.13)
By definition a monochromatic wave is fully polarised:
P=Q*+U*+V? (5.14)

Now the Stokes parameters can be expressed in the observable parame-
ters B, o and §:

I = E}4+ES (5.15)
Q = Bi-Ej (5.16)
U = 2F;Ecosd (5.17)
V = 2E; Eysind (5.18)

5.2 Convolutions

5.2.1 General

In the preceeding paragraph several characteristic parameters have been defined which relate
to the resolution of the astrophysical instrumentation in use. Although this gives a handle on
capability and potential performance, for quantitative handling of the data full account needs
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Figure 5.2: The convolution h at point x (lower panel) of two functions f and g is equal to
the integral of f(u) and g(x —wu). Note that g(x — u) is mirrored with respect to g(z). Credit
Bracewell (1986).

to be taken of the influence of the instrument response on the incoming information carriers.
This process can be described with the aid of convolutions: the measurement result can be
described by a convolution of the measurand under study and the response function of the
measurement device.

The convolution h(x) of two functions f(z) and g(z) is:

+00
W) = (o) s 9(a) = [ f(u)-gla —u) du (5.19)

In words: a convolution describes the impact of a measuring device, described by g(z), when
it takes a weighted mean of some physical quantity f(z) over a narrow range of the variable

x, see figure 5.2. The simplest form of g(z) is the window function ALMH (Aixo)’ for which
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the convolution integral reduces to the expression for the so-called running average:

1
a:+§x0

A%O 700f(u)1'[ <$A;0“) du = A%«U [ s (5.20)

T—5T0

2

Convolutions are commutative, associative and distributive, i.e.:

fl@)xgle) = g(x)x f(x) (5.21)
f@)* (g(x) « h(x)) = (f(x) *g(x)) * h(z) (5.22)
f(@) « (g(x) + h(z)) = f(z)*g(z)+ f(z)*h(x) (5.23)

5.2.2 Fourier transforms

Convolutions can be easily and elegantly handled by employing the Fourier transform tech-
nique. The Fourier transform of a function g(x) exists if it satisfies the following conditions:

1. The integral of |g(z)| exists, i.e. [°° |g(x)]| dz is convergent.
2. Discontinuities in g(z) are finite.

The Fourier transform F(g(x)) of g(z) is called G and is a function of the Fourier domain
variable s:

+oo
Flg(x)) = G(s) = / g(x) e 2757 dy (5.24)

The inverse transform is given by
+0o0
g(z) = / G(s) €257 (5.25)
— 00

For a function h(t) depending on time, its Fourier transform will depend on the frequency
variable f:

+00
H(f) = / h(t) e 270 gy (5.26)

Sometimes the frequency variable f is replaced by the angular frequency w = 27 f, yielding
+o0o
H(w) = / h(t) e dt (5.27)
—0o0
+00
W) = - / H(w) e dew (5.28)
27T—oo

which lacks the symmetry of the expressions in f.
A Fourier transform pair is often indicated in a symbolic way by a double arrow: g(z) <
G(s) or h(t) & H(f).
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A particular useful theorem from Fourier theory states that the Fourier transform of the
convolution of two functions equals the product of the Fourier transforms of the individual
functions

F(fxg)=F(f) Flg) or, in shorthand : [ xg < F(s)-G(s) (5.29)

This is called the convolution theorem. Other useful and frequently applied theorems are

o) o e (2)

lal = \a

i3

(5.30)

f(z)+g(z) & F(s)+G(s) (5.31)

flzr—a) & e ?™MSE(s) Shift theorem (5.32)

f(z) coswr < % F <3 — %) + % F (3 + %) (5.33)

f@)* [ (~z) & [F(s) (5.34)

fl(z) & 2mis F(s) (5.35)

%(f(ﬂﬂ) xg9(z)) = fl(z)xg(z) = f(z)*d'(2) (5.36)
+00 +oo

/ | f(z) 2 dz = / | F(s)|* ds Parseval’s theorem — (5.37)
+;ooo _iooo

/ F(2)g" (@) do = / F(s)G*(s) ds (5.38)
- e

f and g real / f(x)g(—x) dx = / F(s)G(s) ds (5.39)

5.3 Instrument response and data sampling

5.3.1 Response fuctions

In observational astrophysics it is often necessary to have a full and quantitative knowlegde
of the angular and spectral reponse functions in order to perform a proper deconvolution of
the measurement data to extract optimally the characteristics of the information source.

Consider the example of a spectrometer which possesses a response function R(A, \'). In
many cases, the smearing effect (or blurring) of the spectrometer is solely a function of the
wavelength difference \' — A, i.e. R(\,\') = R(N' — \). If the information source emits a
spectrum S(A), the source function, the measured distribution M(A) at the output of the
spectrometer is given by the convolution:

+oo ©0
M) = / SOV)R(A — V) dN' = / S(N)R(A — ') dN (5.40)
—00 0

since S(A) = 0 for A < 0. Applying the convolution theorem, with S(A) & S(s), R(\) < R(s)
and M(\) & M(s)

M(s)
R(s)

S(s) = (5.41)
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The spectrum of the source can be reconstructed by deconvolution of the measured spectrum.
This is accomplished through the inverse Fourier transform:

S\ =F ! {A;((j))} (5.42)

To illustrate the notions just described, consider a spectrometer with a Gaussian response
function:
1 _22
R(A) = e 202 (543)

2o

Suppose an infinitely narrow spectral line at wavelength \g is measured: S(\) = Sp-6(A— o).
The convolution of S(A) and R()) gives the measured result, which is (of course) a Gaussian
distributed profile around Ag:

S, _ (A=2p)?
0 Tt (5.44)

M(X) =

2o

Suppose an observer has measured M (\) and R()) is known. He can now reconstruct S(\).
First the Fourier transform of M () is taken:

+00
M(s) = / MV e 275X g
—0o0
+oo 2
_ / S[] 6_% 6727”25/\ d\
2o

+o0o
S ; 2.2 2 _Q=2)? o s 25242
_ 0 e 2misho 2750 / e 523 2mis(A—Xo)+2m%0%s d\

— o0
S, +o0o
_ 0 —2mishg—2m2s202 / 77“\,2\/2_ d)\’
- € e o
\V2To J
= 5 6_27ri3)\0—27r2s2g2 (5.45)
where )\ = % + iv2mos. Analogously
R(S) = 6_271'2820'2 (546)

(Note that the Fourier transform of a Gaussian function is again Gaussian.) Applying equation
5.42 gives .
S(A) = F71Sp e72™520] = S5 - §(A\ — Ao) (5.47)

i.e. the observer has recovered the exact form of the spectral source function.

Consider now a spectrometer with a Gaussian response function with width o. If o is
large, i.e. the line spread function is wide, the Fourier domain only contains low frequencies
as can be seen from equation 5.46 and figure 5.3. By decreasing o, the range of frequencies in
the Fourier domain increases and consequently the range of spectral frequencies over which
the measurement provides information. The In R(s) is a parabola, which tends to a d-function
for the limit o — oo (no spectral resolution) and becomes flat for o | 0 (perfect transmission
at all frequencies).

Obtaining S(A) by this method is, in practise, complicated by two factors: data sampling and
noise. This will be adressed in the following paragraphs.

89



small o L

R(A)

Figure 5.3: The line S()\) is widened by the response function R(X). For a broad (narrow)
response the Fourier transform of the measured function M (s) contains information over a
narrow (broad) range of frequencies.

5.3.2 Discrete measurement intervals, the Nyquist criterion

First of all the measurement distribution M (\) is not a continuous function as assumed in
equation 5.40, but is always sampled in discrete intervals or bins and is also not available over
the whole interval from —oo to oco.

The problem of discrete intervals can be overcome by using the discrete version of the Fourier
transform.

Suppose there are N consecutive sampled values g(zy) with z, = k7 (k=0,1,2,...,N — 1),
the sampling interval is 7. With N input numbers, evidently no more than N independent
output numbers can be produced. Estimates of the Fourier transform G(s) can now be sought
at discrete frequency values s, = - (n = —N/2,..,N/2). The extreme values of n
correspond in this case to the lower and upper limits of the Nyquist critical frequency (see
later in this paragraph). Notice that in this case n takes N + 1 rather than N values, this is
because the two extreme values of n are not independent (i.e. they are equal), this reduces
the count of independent numbers to V.

+oo N-1
G(sn) = / g(x) e 2™y Z g(zg) e 25 1 = Gp(sy) (5.48)
% k=0
Substitution of xj and s, yields:
N-1 .
Gp(sn) = 7 Y glag) e 2™/ (5.49)

k=0

where Gp(s,) is the nth value of the discrete transform of g(z).
The inverse Fourier tranform, which recovers the set of sampled g(x) values exactly from

Gp(sn) is given by:
1 N1

g(zp) = N Z Gp(sy) e2™kn/N (5.50)

n=0
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N.B. Outside the measurement range the function values are set to zero.

Using discrete Fourier transforms instead of continuous transforms does not lead to loss of
information, provided the interval between sampling points or the bin width 7 satisfies the
Nyquist criterion for optimum sampling. This can be qualitativily understood in the follow-
ing way. Any physical measurement system has a finite frequency response, therefore the
measured distribution M (x), constituting some function of a parameter z, is contained in
bandwidth, i.e. the Fourier transform M (s) < M(z) is a bandlimited function, characterized
by a maximum cut-off frequency s;,q., also called the critical s or Nyquist frequency. In
the case of ’Gaussian’ response for instance: the frequencies will never be distributed purely
Gaussian since no physical system transmits the tail frequencies up to oo.

Nyquist (and Shannon) established a theorem for optimum sampling of bandlimited observa-
tions. This theorem states that no information is lost if sampling occurs at intervals (or in
bins) 7 = t The formal derivation of this theorem will not be given here, it is treated in
the follow-on course OAF2. Thus, the use of the discrete Fourier transform causes no loss
of information, provided that the sampling frequency % is twice the highest frequency in the
continuous input function (i.e. the source function convolved with the response function). The
maximum frequency $pq; that can be determined for a given sampling interval equals there-
fore % If the input signal is sampled too slowly, i.e. if the signal contains frequencies higher
than %, then these cannot be determined after the sampling process and the finer details will
be lost. More seriously however, the higher frequencies which are not resolved will beat with
the measured frequencies and produce spurious components in the frequency domain below
the Nyquist frequency. This effect is known as aliasing and may give rise to major problems
and uncertainties in the determination of the source function.

Example: Consider again the above spectrometer with the Gaussian
response function. What is the proper sampling interval for the mea-
sured function M(\)?

As stated before: no physical system transmits the tail frequencies up to
00. Suppose that the frequencies of the Gaussian shaped Fourier trans-
form R(s) = e 279" are covered out to three standard deviations in
the s domain, i.e. the exponent 2r?0%s2, equals % so that sq. =~ % As
is clear from the right panel in the figure in section 5.3.1, the power
in the Fourier domain above this value of s., can be neglected. The
Nyquist frequency s., = % can be considered as appropriate and since
Ser = 5= the proper sampling interval T (or bin width) for M (X) in case
of a Gaussian line spread function with width o is:

T=0 (5.51)

If sampling (binning) is performed at a higher frequency the informa-
tion in M (\) is oversampled, at lower frequencies undersampled. It is
important to note that although oversampling ensures the transfer of
all information, it also leads to statistical dependence between adjacent
points (bins). This implies that standard statistical tests, like the x?-
test or other likelihood tests, do not apply anymore since they assume
statistically independent samples.
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Figure 5.4: Operation that defines the Wiener filter problem. Credit Peebles (2001).

5.3.3 Noise

Secondly the presence of noise (both intrinsic to the signal and background noise) and distur-
bances will produce ambiguities in the values derived for S(A). Handling the errors and their
propagation is a major subject in deconvolution processing to arrive at reliable confidence
intervals for the physical parameters estimated for the radiation source. Sophisticated filter
algorithms have been developed to optimally reduce the influence of noise. Random noise can
be most efficiently reduced by employing so-called optimal or Wiener filters. If applied to a
stochastic process, the Wiener filter is the optimum result if the filter is designed such that
its output is a good estimate of either the past, the present or the future value of the input
signal. The basic problem to be addressed is depicted in figure 5.4. The input signal W (¢) is
a stochastic process comprising the sum of a signal component X (#) and a noise component
N(t):

Wi(t) = X(t) + N(¢) (5.52)

The system is assumed to be linear with a tranfer function H(f), being the Fourier transform
of the impulse response function h(¢). The output of the system is denoted Y'(¢).

In general , H(f) is selected such that Y'(¢) is the best possible estimate of the input signal
X (t) at the time t + o, that is the best estimate of X (¢ + tg). If to > 0, Y (¢) is an estimate
of a future value of X (t) corresponding to a prediction filter. If ty < 0, Y(t) is an estimate of
the past value of X (t), corresponding to a smoothing filter. If t = 0, Y (¢) is an estimate of the
current value of X ().

If Y (¢) differs from the desired true value of X (¢ + ty), the error is:

e(t) = X(t+t) - Y(t) (5.53)

This error is illustrated conceptually in figure 5.4 by dashed lines. The optimum filter will be
chosen so as to minimize the mean-squared value of €(¢):

minimize B {e(t)} = BE{[X(t+t) - Y ()]} (5.54)
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Figure 5.5: Example of central limit theorem: window function and two consecutive selfconvo-
lutions. The last one already resembles closely a Gaussian function. Credit Papoulis (1991).

We shall not give the derivation of the expression for the optimum filter transfer function, but
only give the result for the case of an uncorrelated input signal X (¢) and noise N (t):

Sx(f) omi

H = e?mifto 5.55
in which Sx (f) = | X (f)|? and Sy (f) = |N(f)|? represent the so-called power spectral densities
of the input signal X (¢) and the noise N (t) respectively.

Note: Let us check the value of H,,(f) for a noise free input, i.e. Sy(f) = 0. Equation
(5.55) then reduces to:

Hop(f) = €™/ (5.56)

This expression corresponds to an ideal delay line with delay —t¢ (recall the shift theorem!). If
to > 0, corresponding to prediction, we require an unrealizable negative delay line. If £y < 0,
corresponding to a smoothing filter, the required delay is positive and realizable. H,,(f) =1
follows for ¢ty = 0, this result is intuitively obvious.

5.4 The Central Limit Theorem

If a large number of functions are convolved together, the resultant function becomes increas-
ingly smooth. Consider now n independent random variables X, each distributed according to
a stationary probability density function px, (z). The sum X of these variables, i.e. X =3, X,
has a mean g = Y, y; and a variance 02 = 3", 02. Moreover, the probability density function

of the sum X follows from the convolution of the individual probability densities:

px(z) = px,(z) * px, () * -~ *px, (z) (5.57)

The central limit theorem (CLT) in its general form states that under applicable conditions
the convolution of n functions (not necessarily the same) is a Gaussian function whose mean
value is p and whose variance is o plus a remainder which vanishes as n — o0o:

=

e

(t=52)°

o

N

5

lim px(z) = ! (5.58)

n—00 2m0
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The central limit theorem is basically a property of convolutions: the convolution of a large
number of positive functions is approximately Gaussian. An example is given in figure 5.5,

1
z T2T> already produces a

which shows that two self-convolutions of the window function %H

function which closely approximates a Gaussian density distribution. A starting condition for
the CLT to hold in the case of repeated self-convolution is the requirement that the probability
density function p(z) or its Fourier transform can be approximated by a parabolic function
in a small region around its maximum value.

Most physical measurement systems comprise a chain of elements, each contributing noise
and changing response through it particular response function. The central limit theorem
shows that in many cases these successive convolutions lead to an integral response, which
can be approximated by a Gaussian function.
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This figure shows the window function and three successive selfconvolu-
tions and the associated Fourier transforms. The window function TI(x)
forms a Fourier pair with the function sinc(z).
Successive self-convolutions of TI(x) yield successive self-multiplications
of sinc(s) (application of the convolution theorem, i.e. II*" < sinc”(s)).
In a small range As around s = 0 (maximum) sinc(s) can be approxi-
mated by the parabolic curve (1 — as?), the nt" power of sinc(s) is then
approximated by (1 — as?)"™. Taylor expansion of this function yields
sinc(s) =~ (1 — as®)" = e™"5” | rest term (5.59)
Keeping s fixed and letting n — oo causes the Gaussian (exponential)
term to get continually narrower, its width goes as n~ /2, and the rest

term tends to zero. The Gaussiag tzerm in the s-domain has a Gaussian

™

. . _mxr . . .
Fourier transform, i.e. /-~ - e~ na", which continually becomes wider,

a property that variances add under convolution. The interesting phe-
nomenon that emerges from this illustration is the tendency towards
Gaussian form under successive self-convolution and, also, under succes-
sive self-multiplication. Credit Bracewell (1986).
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Chapter 6

Signal to Noise Ratio

6.1 General

The feasibility of detecting a signal from a cosmic source depends on the level of noise (and
disturbance) in which the signal is embedded during the measurement. Contributions to
the noise signal potentially comprise other sources of radiation in the field of view of the
observing instrument (sky-noise), background radiation from the operational environment of
the telescope (e.g. atmosphere, radiation belts, earth) and noise arising from the constituting
elements of the measurement chain (transducers, transmission lines, wave tubes, amplifiers,
mixers, digitisers, etc.).

Consequently, the quality of a particular observation is determined by the magnitude of
the so-called signal-to-noise ratio (SNR). This SNR is generally a function of integration time
(Typs) of the observation and depends on the bandwidth (A), vv, €€) of the measurement.
From this a limiting sensitivity can be derived, i.e. the weakest source signal that can still be
detected significantly.

For electromagnetic radiation three types of noise characterisations dependent on wave-
length, are in use.

1. In the radio-band coherent detection is employed, i.e. the phase information is preserved,
with hv < kT. Noise and SNR are normally represented by characteristic temperatures
and temperature ratios.

2. In the (far) infrared band (hv ~ kT') incoherent detection is used. A transducer (Latin:
transducere) converts the radiation field into a voltage or current and noise is commonly
expressed in terms of an equivalent radiation power (power characterisation).

3. At shorter wavelengths (Optical, UV, X-rays, vy-rays), the incoming photons can be
registered individually: so-called single photon counting. The signal and noise contri-
butions can then be evaluated by a statistical treatment of the accumulated quanta, i.e.
quantum characterisation. The latter treatment of noise and SNR applies by definition
for corpuscular radiation and neutrinos.

The three notions introduced above are discussed in some detail in the following sections
and the parameters which are commonly used for SNR characterisation in these cases will be
shortly reviewed.
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horne

wave pipe

Figure 6.1: Schematic view of a radio telescope, with the receiving horne, the wave tube and
the detector diode.

6.2 Temperature characterisation

6.2.1 Brightness and antenna temperature

Consider a thermal signal source radiating at radio wavelengths. If this source is optically
thick, the specific intensity B(v) is given by the Rayleigh-Jeans approximation (hv < kT') of
a blackbody radiator:

2
BW) = o) = 4 = 2 (6.1)
in which Ty, is the brightness temperature. (Note that although the last expression contains
A, the units remain however per unit frequency, e.g. Watt-m—2-sr~1.Hz~1. The convenience
of using A becomes apparent when integration over the beamsize is performed, see below.) In
this way a radio brightness distribution B(v, Q) on the sky can be described by an equivalent
brightness temperature distribution Ty (€2).

Radio waves arriving at the focus of a telescope enter the receiver input by a horn (or
“feed”) which matches the impedance of the vacuum to that of a wave-tube, that selects
one degree of polarisation. The wave is subsequently guided through the wave-tube into a
resonance cavity, which defines by its selectivity a bandwidth Av centered around a frequency
vy of the incoming radiation. A (always) non-linear detection element (transducer) in this
resonance cavity converts the wave field (i.e. the electric vector) into a current. This is the
simplest detection configuration for a radio telescope, nevertheless it suffices to describe the
essential characteristics of the measurement process, see figure 6.1. The power reaching the
non-linear element is in good approximation given by:

1

PW) =500 AW) 35 [ TS a6 = n(w)KTon (6.2)

Qbeam

in which the factor % refers to a single polarisation component, A(v) represents the telescope
effective area at frequency v, Qpeqn is the diffraction limited beamsize and n(v) takes account
of the frequency dependent transmission losses prior to detection by the non-linear element.
P(v) is given in units of Watt-Hz~!. Expression 6.2 can be set equal to the product of the
transmission losses 7(r) and a thermal power kT,,; (per unit frequency) available at the
receiver input. Ty, is called the antenna temperature and is therefore independent of the
transmission in the receiver system. It should be noted that T},; is only equal to the physical

temperature 7j of the radio source if the following conditions are met:

e The source is optically thick at the frequency considered.
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e The source is sufficiently extended to fill the diffraction limited beamsize peq:m of the
telescope, i.e. Qpearm, satisfies A(v) Qpeam = A2, the ’etendue’ of coherence introduced in
Chapter 3.

If the radiation source is not a blackbody but has an arbitrary spectrum (e.g. an optically thin
thermal source or a non-thermal source), the antenna temperature Ty,; becomes frequency
dependent and does not relate to a physical temperature. The power received at the detection
element is now expressed as

P(V) = n(V)kTant(V) (6.3)

in which T,,;(v) is the antenna temperature at the specific frequency v.
In this picture the antenna may be thought to be replaced by its characteristic resistance
R, at a fictitious temperature Ty, () producing a thermal noise power kTy,:(v) per unit
frequency at frequency v or kT, if the power received is white (frequency independent) over
the bandwidth Av considered. In turn, this replacement is equivalent to a fictitious noise free
resistor R, in series with a voltage source which generates a power spectral density, in units
of Volt>-Hz™1:
SV(V) = 4kTant(V)Ra (6'4)

It is important to realize that T, () has generally nothing to do with
the physical temperature of the resistor R,. To demonstrate this, consid-
er an amplifier (bandwidth Av = 1 MHz), with an output impedance R
= 50 (), generating a rms-white noise voltage oy = 1 mV. The available
power per Hz at the output of this amplifier follows from

2

__ 9% _ . 10-15 -1
= TR A =5-10 Watt - Hz (6.5)

The corresponding noise temperature is
P
Tant = 7 ~ 3.5 10° K (6.6)

whereas the physical temperature is about 300 Kelvin.

Only in the case of passive elements (i.e. which do not need energy), like
wave guides, resistor networks and transmission cables embedded in the
earth, the noise temperature and the physical temperature are about
equal.

6.2.2 Noise sources at radio wavelengths

In practise, if the radio antenna is pointed at a sky region devoid of sources, a non-zero output
will be measured at the output of the receiver. This arises from various noise sources:

e Residual thermal emission from the atmosphere and from the telescope itself. A sim-
ple approximation is available when the atmosphere is optically thin, i.e. if the optical
depth 7(v) along the zenith is small compared to unity. In this case, the specific in-
tensity I(v) ~ 7(v)B(v, Tatm), with B(v, Tyn) the blackbody function at the average
temperature Ty, of the atmosphere. Since 7(v) is a strong function of wavelength, the
contribution of the atmospheric thermal emission to the noise is also a strong function
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Figure 6.2: Frequency dependence of the noise temperature for several sources of background
radiation and receiver components. Credit Longair (1992).

of wavelength and so is the associated noise temperature Ty, (v). For example at v
= 100 GHz (A = 3 mm), 7(r) = 0.2, i.e. the atmospheric emission corresponds to an
antenna temperature of about 50 Kelvin. Figure 6.2 shows, among others, the frequency
dependence of the noise temperature associated with atmospheric emission.

e Thermal emission from the telescope environment and the earth surface, detected in
the side lobes of the diffraction pattern of the telescope’s angular response function
(diffraction limit). This contribution to the antenna temperature is very site dependent.
Symbol: Tjpe (v).

e Thermal noise from the Galaxy and the microwave background. The Galactic contribu-
tion is again strongly frequency dependent, the microwave background is white. Both
components are also indicated in figure 6.2. Symbol: Ty (v) and Typ.

e Contributions from the receiver chain, i.e. feed, wave guides, detection element, ampli-
fiers, etc. This contribution to the total noise is normally expressed as an effective noise
temperature Terp(v). The value of T fp(v) is derived in the following way. Suppose that
the total noise power available at the antenna P,,;(v), is subject to a power amplifi-
cation G(v) in the receiver chain. At the output stage of the receiver, the total power

100



Pyt (v) is then given by

Prec(V)
G(v)

Py(v) = G(V) * Pyt (V) 4+ Prec(v) = G(v) « | Pyt (v) + (6.7)
in which P,.(v) represents the noise power introduced by the receiver chain. Division
by Boltzmann’s constant k yields:

Tour(v) = G(v) - [Tant(v) + Ter (V)] = G(v) - Top(v) (6.8)

T,ut(v) equals the noise temperature at the output of the whole telescope system (an-
tenna + receiver chain), Tpsr(v) is the effective noise temperature introduced above.
Tepr(v) can be regarded as the temperature which has to be assigned to the character-
istic resistance R, of the antenna in order to have a fictitious noise-free system produce
the same noise temperature as the noisy system for T,,; = 0 Kelvin. Ty, (v) represents
in a similar way the temperature to be assigned to R, to have a noise free system pro-
duce the same noise temperature as the noisy system at the actual value of the antenna
temperature T,;:

Top(v) = Tant (V) + Tepp(v) (6.9)

Top(v) is the so-called operational temperature of the telescope system. This relation
effectively contains all essential noise contributions: Ty,:(v) includes all components
due to radiation noise, T, fs() includes all components referring to the receiver chain.
Figure 6.2 shows some typical values of T, (v) for masers, cooled field-effect transistors
(FET) used in the first amplifier stage, parametric amplifiers and superconducting mixer
elements (SIS) which are employed in case of a heterodyne detection chain.

Note 1: If the receiver chain consists of a series of n noisy elements, each with a power
gain G;(v) and an associated effective temperature T¢ sy, (), the operational temperature
Top(v) derives from:

T v T v
Top(v) = Tat(v) + Togpy () + 222® o Ten )

G(v) T e o

This is the cascade rule according to Friis (verify yourself). Expression 6.10 shows
that the first stages in the receiver chain are mainly determining the noise behavior
of the system, once the amplification is sufficiently high, the noise contributions of
additional stages become small. In particular the input-stage is crucial with respect to
the achievable noise performance.

Note 2: The power gains G;(r) may partly be smaller than unity, this represents trans-
mission losses in passive components like wave tubes, transmission lines and resistor
networks: G;(v) = n;(v). These losses can seriously degrade the noise characteristics
of the system since the physical temperature of the attenuating components enters the
determination of Ty, (r). According to Kirchhoft’s reciprocity law, in equilibrium the
absorbed power by the passive components equals the radiated power. Hence, the contri-
bution of a single loss-element at physical temperature 77, to the noise can be expressed
as (1 —n(v))Ty or ﬁ[L(l/) — )Ty, with L(v) = n~'(v) the frequency dependent loss-
factor (by definition larger than unity). Employing this single loss-element behind an
antenna yields a system output noise given by the expression:

Toualv) = F7 (Tans(¥) +E) = 11T1) (6.11)
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ie. Teff(V) = [L(V) - 1] TL, and
Top(v) = Tos (v) + [L(v) — 1]T}, (6.12)

To show that this potentially strongly influences the value of T,,(v), consider the fol-
lowing example.

Suppose the telescope is pointed at a cloudless sky region devoid of sources with Ty, (v)
= 20 K. If a small piece of wave tube between the antenna and the input of the amplifier
introduces a loss of 10 %, i.e. L(rv) = 1.1, and this wave tube is at room temperature
(T ~ 290 K), the operational temperature becomes Tp,(v) = 20 + 0.1 - 290 = 50 K; a
deterioration of a factor 2.5. If the wave tube is cooled with liquid Nitrogen (" ~ 70
K), Top(v) becomes about 27 K (35 % deterioration) and at liquid Helium temperature
(T' = 4 K), T,,(v) = 20 K, i.e. practically no deterioration. The importance of cooling
of passive components at the receiver chain front-end is therefore amply demonstrated.

6.2.3 The SNR-degradation factor

With the above assessment of the various noise contributions, the total operational noise
temperature is expressed as:

Top(y) = TGal(V) + Ty + Tatm(y) + Tlobes(y) + Teff(’/) (6'13)

This represents the background power against which a potential source signal will have to be
detected. If the signal power (i.e. radiation flux) is given by ®4(v) = kTs(v), the momenta-
neous SNR at the input of the receiver chain is given by the ratio between the available source
power and the power contained in the background radiation fields:

Ts(v)
SNR;,(v) = 6.14
in(”) Tea(v) + Teb + Tatmv) + Tiobes (V) (6.14)
The noise generated by the receiver chain degrades the SNR at the output to:
G(v)-Ty(v)
SNR oyt (V) = 6.15
)= G o) T T + T + Tima®) + Teg ]
The SNR-degradation factor D(v) (> 1) is now simply expressed as
NR; T,

- SNRout(I/) - Tant(y)

Referring to the example in Note 2 in the previous subsection, the deterioration of the SNR
due to the loss in the wave tube would be specified by D(v) ~ 2.5 (room temperature), D(v) ~
1.35 (liquid Nitrogen) and D(v) =~ 1 (liquid Helium).

The momentaneous SNR = ;;;((VV)) refers to the value obtained considering the radiation

energy during one second (e.g. Watt) and in a bandwidth of 1 Hz. In reality this is of course
greatly improved by integration over the selected bandwidth Ar and over an exposure period
Tops- A full derivation of the resulting SNR is given in the more advanced course OAF2, here
only the result is given:

T(v)

SNR =
TOP(V)

VT pps Av (6.17)
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Frequency (f)

Figure 6.3: Frequency spectrum of the noise of a transducer. Noise power is along the vertical
axis. Credit Dereniak € Crowe (1984).

i.e. the SNR improves with the square root of the product of the radio channel bandwidth
and the observation time T,;s. The minimum detectable source power for a SNR = 1 is then
given by

P (v) = 2k Top(v)
men Vs Av
Note: The value of T,,(v) is measured for two values of the antenna temperature by looking

alternatively at the source and at a neighboring (source-less) sky point. The Tj,(r) val-
ues in equations 6.17 and 6.18 refer to an antenna temperature excluding the signal source

(6.18)

contribution.

6.3 Power characterisation

6.3.1 Typical set-up of observation

Consider the case of incoherent detection of a radiation field by a transducer which converts
the incident radiant power into an electrical output (usually a current or a voltage). Two
types of flux will be used to characterise the radiation source:

e Monochromatic flux ®()\y) at a particular wavelength Ao, defined as:

B(Ng) = /<I>(>\) S0 — o) dA (6.19)
0

e Blackbody flux ®(7'), which is the specific flux integrated over a blackbody profile:

®(T) = / Byp(A, T) dA (6.20)
0

The incoming signal is modulated (e.g. by a chopper) with a fixed frequency f,,p. This signal
is now the input for the transducer. This transducer has a spectral bandwidth A\ over which
its integrates the incoming flux. It produces a time-dependent output voltage V,,; or current
I,yt, which also contains the noise of the transducer. If thermal noise (so-called Johnson noise)
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dominates, this noise is “white” in the temporal frequency domain: k7 Watt-Hz™! up to a
cut-off frequency fe, see figure 6.3. The frequency bandwidth of the transducer is in this case
Af = f.. Since the source signal is periodic with known period T = chlop’ the outcoming
signal can be folded modulo this period. In this process all transducer noise at other temporal
frequencies can be filtered out.

Source | == Chopper | = |Transducer

6.3.2 Responsivity

For the case of incoherent detection a basic figure of merit is responsivity. This is the ratio of
the electrical output (in Amperes or Volts) to the radiant input, i.e. total radiation flux (in
Watts).

The spectral voltage responsivity of a detection system at a particular output wavelength Ag
is the measured voltage output Vg, (f) divided by the monochromatic radiation flux ®(\g, f)
incident on the transducer:

Ry (Ao, f) = Vould) (in Volt - Watt™1) (6.21)

(Ao, f)

Since the transducer generally has a limited frequency response or time resolving power (in
figure 6.3 it is flat up to a cut-off frequency f.) the output V,,; will depend on the temporal
behaviour of ®()\g), which can be modulated with a chopping frequency f. For instance, if
f > f., the response of the transducer will be zero. Simularly, the spectral current responsivity
is defined as:

1, out(f )

Ri(Xo, f) = 200.7) (in Ampere - Watt 1) (6.22)

Alternatively, a blackbody responsivity R(T, f) can be defined, which represents the detector
output signal divided by the incident radiation flux from a blackbody source ®(7") modulated
by frequency f:

Vout(f )

(T, f)
The relation of Ry (T, f) with Ry ()Xo, f) can be easily seen by computing the voltage at the

output of the transducer through integration of the spectral responsivity over a blackbody
spectrum:

Ry (T, [f) = (6.23)

Vit = / Ry (ho, ) (R0, T) dro = Ry(T, f) / (Mo, T) dg (6.24)
0 0

hence,

Ry (Mo, ) @op(Xo, T) dXo

Ry(T,f) = = Ry (Mo, f) (6.25)

)
f (I)bb(A[]aT) d>‘0
0

which shows that Ry (T, f) is obtained by averaging Ry (Ao, f) over a blackbody spectral
distribution. Note that the blackbody responsivity is a measure of the detector response to
incident radiation integrated over all wavelengths even though the transducer is only sensitive
to a finite wavelength interval.

104



Example: consider a steady blackbody source with area Ay irradiating
a sensor (transducer) area Ay., both areas are normal to the optical
axis connecting them. The power emitted by the blackbody source per
unit solid angle equals A;o5gT* /7 (in Watt-sr—) with ogg = 5.67-10~8
Watt-m~2-K~* Stefan-Boltzmann’s constant. The transducer area A,
subtends a solid angle as seen by the blackbody source of Ay./R? if the
source is at a distance R. Hence, the blackbody voltage responsivity
follows from:

71'.R2 Vout

By (T) - AAy, USBT4

(in Volt- Watt™!) (6.26)
This equation also holds if the transducer is preceded by a loss-less
optical system that images all of the blackbody source area onto the
detector area, since the ratio Vg, /Ay remains constant.

6.3.3 The Noise Equivalent Power (NEP)

The noise equivalent power (NEP) of a detector is the required power incident on the detector
to produce a signal output equal to the rms-noise voltage at the output. Stating this in a
different way, the NEP is the signal power that is required to produce a SNR equal to one.
This signal power is given by

Vour = Ry - @ (6.27)

This yields a SNR of
SNR =

(6.28)

Ry-®  R;-®
\/ VnZOise \/ Igoise
and consequently for a SNR = 1:

® = NEP — V VnQoise v ITQLoise (629)

Ry Ry

Either the spectral responsivity R(\g, f) or the blackbody responsivity R(T, f) may be insert-
ed in equation 6.29 to define two different noise equivalent powers. The spectral NEP()\y, f)
is the monochromatic radiant flux ®(\g) required to produce a SNR of one at a frequency f.
The blackbody NEP(T, f) represents the blackbody radiant flux required to produce a SNR
of one.

The noise equivalent power is useful for comparing similar detectors that operate un-
der identical conditions. It should however not be used as a general measure of detector
performance for comparing dissimilar detectors. Firstly, the larger the temporal frequency
bandwidth Af the larger the noise that is present. Also, increasing the detector area A;. will
in general decrease the respounsivity if all other factors are held constant.

A more useful figure of merit is therefore the normalized noise equivalent power, either
per unit bandwidth:

NEP* = (in Watt - Hz 2) (6.30)

NEP
VAf
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or per unit bandwidth and per unit area:

NEP 1
NEP* = —— in Watt - Hz=2 - m™! 6.31
A AT ( ) (6.31)

Normalisation entails proportionality to the square root of bandwidth and collecting area Ay,.
The reciprocal values of the NEP and the NEP* are the so-called Detectivities, D and D*,
and are often used, i.e.:

1

* _ ]‘ .
= g =D VAR AT (6.33)
(6.34)

implying the notion that “larger is better”. Again, either the spectral or blackbody NEP may
be used to define spectral or blackbody detectivity, D*(\o, f) and D*(T, f) respectively.
An alternative equivalent expression for D* is:

\4 Atr Af

D* =
)

-SNR (6.35)
with @ the radiant power incident on the detector. Expression 6.35 can be interpreted as
D* to be equal to the SNR at the output of the transducer when 1 Watt of radiant power is
incident on a detector area of 1 m? with a bandwidth of 1 Hz. This is of course only meant as
a mental concept because most transducers are much smaller than 1 m? and they reach their
limiting sensitivity output well below 1 Watt of incident power.

The figure of merit D* may be used to compare directly the merit of transducers (sen-

sors, detectors) of different physical size, whose performance was measured using different
bandwidths.

6.4 Quantum characterisation

In observations where the individual information carriers are registered (photons, cosmic-ray
particles or neutrinos), the signal to noise ratio considerations are based on a statistical treat-
ment of the data. This leads to expressions for the limiting sensitivity for source detection
depending on collecting area, exposure time and noise level. In what follows, statistical inde-
pendence is assumed between subsequent events; the process possesses no internal coherence
and the stochastic nature of the data can therefore be described by Poissonian statistics.

Consider a radiation beam, originating from a distant point source, with a photon flux
density n, (e.g. photons-m~2-s7!). Suppose this point source is embedded in uniformly
distributed background radiation noise with a photon intensity n, (photons-m 2.5 L.sr1).
Furthermore, the quantum noise of the detector is given by ng.; counts per unit detector
area per unit time. If the telescope effective area equals /szf, where the energy dependent
collecting area has been averaged over the energy bandwidth of the observation, the number
of registered counts over an integration period T, in one image pixel equals:

Ny = ((ns + nbgAQ)Aeff + ndetApiw)Tobs = (ns + nbgAQ + ndeté)AeffTobs (636)

in which A{2 represents the solid angle subtended on the sky by the angular resolution of the
telescope and § the ratio between the area of a single pixel on the face of the image detector
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Apiy and A, 7f- An adjacent pixel without the point source accumulates in the same observing
time:

Ny = (nbgAQ + ndeté)AeffTobs (637)
According to Poissonian statistics the fluctuations in N; and Ny equal /N; and /N> respec-
tively. The SNR can now be defined as

N1 — N2
VN + N,
in which the signal strength is evaluated in terms of the magnitude of the statistical fluctuation
in the noise component (beware: not in relation to the absolute magnitude of the noise
component).
Consider two extreme cases:

SNR = (6.38)

e The source signal strongly dominates the noise, i.e. Ny < Nj.
In this case the SNR equals

SNR = /Ny = \/nsActTops (6.39)

In terms of the limiting sensitivity, a minimum number of photons N,,;, is required in
order to be able to speak of a detection, for example 10 or 25. In those cases the SNR
equals 3 or 5.

The limiting sensitivity follows from

N, min T —1
ng . =——+— ~ (Ae¢T, 6.40
Smin AeffTobs ( eff Obs) ( )
This is the best possible case. The detection is so-called signal-photon-noise limited. The
limiting sensitivity improves linearly with the effective collecting area and the integration

time.

e The source signal is drowned in the noise, i.e. N; ~ Ny = N.

The criterium for source detection can be formulated on the basis of a certain level of
confidence (minimal SNR) k. The limiting sensitivity now follows from

V2N
AeffTobs
Substituting N = (n, 4+ np, AQ + ndeté)ﬁeffTobs:

2(npg AQ + ngerd)  « _
ns . =k A ~ (AeprTops
Smin \/ AeffTobs ( ff b )

M

(6.42)

In this case the limiting sensitivity only improves with the square root of the telescope
collecting area and the integration time.

In the case nged <K npgAQ (detector noise negligible), the detection is said to be
background-photon-noise limited.

Note: implicitly the bandwidth of the observation also comes in when evaluating the SNR.
The values ng, np, and nge; were defined as integral values over a certain predetermined energy
bandwidth. For example, if an energy bandwidth e;—e; = Ae is considered, ns = [ ns(e) de =

Ae
ns(€)Ae. Similarly, ny, = fipg(€) Ae and nge; = Nger(€) Ae. Now the following relations hold:
e signal-photon-noise limited: N, (€) ~ (AeprTops Ae) ™"

e background-photon-noise limited: n,, , (€) ~ (AeffTobsAe)_%
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Different observatories are not only sensitive in different energy ranges,
but have also different limiting sensitivities. The following figure shows
the spectra of four objects (Crab nebula, 3C273 (a quasar at z = 0.158),
NGC 1068 (an active Seyfert galaxy at 11 Mpc distance) and 3C273
if it were displaced at z = 4. It also shows in thick lines the limiting
sensitivities of several observing facilities.

e Radio: Westerbork (pre-upgrade), Very Large Array (New Mexi-
co), Effelsberg 100 meter dish (near Bonn).

e Infrared: Aircraft balloon experiment, Infrared Space Observatory.

e Optical: eye, 200-inch telescope (5 meter) at Mount Palomar (Cal-
ifornia), Faint Object Camera in the Hubble Space Telescope.

e Ultraviolet + X-rays: UHURU-satellite, EXOSAT, Einstein Ob-
servatory and the Chandra X-ray Observatory (AXAF).

e v-rays: COS-B.

Sensitivities for astronomical observations
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Chapter 7

Imaging in Astronomy

As introduced in Chapter 3, each position in the sky specified by a unit direction vector
) is associated with a monochromatic intensity (spectral radiance) I(ﬁ, A, t), received by an
observer. This distribution is the monochromatic image or map of the sky (or source). The
observation process inevitably degrades this image in at least three different ways:

e Through the finite exposure length, which leads to a finite number of photons incident
during the measurement time. Consequently we always deal with a sample of the parent
distribution representing the true image. This introduces measurement noise and leads
to an imperfect restitution of I (Q, A, t), releative to a measurement with infinite signal-
to-noise ratio. We have treated the issue of signal-to-noise in some depth in Chapter
6. We shall also return to this subject in more quantitative detail in the master course
Observational Astrophysics 2 (OAF2).

e Through the finite size of the telesope or antenna apertures, that imposes a fundamental
restriction on the attainable image quality due to diffraction. In addition, the focussing
properties and the imperfections in the realisation of the optical surfaces lead to geomet-
rical aberrations that may become dominant over the fundamental restrictions imposed
by diffraction.

e In the case of ground-based optical observatories, through the consequence of the radi-
ation beam crossing the Earth’s heterogeneous and turbulent atmosphere. In modern
telescope systems this can partly be compensated for by employing adaptive optics.

In the following sections we shall treat in some detail the effects on image formation arising
from diffraction, geometrical aberration and atmospheric ”seeing”.

At wavelengths shorter than ~ 0.1 nanometer, the application of focussing optics becomes
untenable due to extremely low reflection efficiencies of the optical surfaces. Imaging can
still be accomplished by employing beam modulation techniques (e.g. coded mask telescopes)
and, at gamma-ray wavelengths, by exploiting the directionality properties of the photon
interaction processes. In the latter case, the optical element and the detection system have
become one and the same device. A discussion of these techniques is presented in the latter
part of this chapter and is elaborated with reference to recently operated and planned space
observatories.
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7.1 Diffraction

7.1.1 The Huygens-Fresnel principle

Consider a point source S at great distance compared to the size of the aperture of an observ-
ing telescope, a condition that is mostly satisfied in observational astrophysics. The EM-wave
incident on the telescope aperture can hence be described by a plane wave. Propagation of
this plane wave beyond the aperture opening is then governed by the Huygens-Fresnel princi-
ple. This principle states that every unobstructed point of a wavefront, at a given instant in
time, serves as a source of secondary wavelets with the same frequency as that of the primary
wave. The amplitude of the radiation field at any point beyond, is the superposition of all
these wavelets considering their amplitudes and relative phases.

7.1.2 Fresnel and Fraunhofer diffraction

Now imagine the aperture of the telescope as an opening in an opaque screen and consider
a plane of observation very close behind this aperture. Under these conditions a clear and
sharp image of the aperture is recognizable, despite some light fringing around its periphery
(keep in mind that the idealized geometric aperture image corresponds to A — 0). If the
plane of observation is moved further away from the aperture, the radiation starts to diverge
and the image of the aperture becomes increasingly more structured as fringes become more
prominent. This is known as Fresnel or near field diffraction. If the plane of observation
is gradually moved out further, the fringes continually change, the projected pattern is now
spread out considerably and bears almost no resemblance anymore to the actual aperture.
Still further out, only the size of the pattern changes and not its shape. The radiation now
propagates in spherical expansion. If R is the distance from the aperture, the wave amplitudes
decrease proportional to R and the radiation power with R?, in contrast to the plane wave
incident on the aperture opening. In this region we have the Fraunhofer or far field limit
for diffraction, which holds for the great majority of observations in astronomy. Putting it
differently: taking a point source S and a point of observation P, both very far from the
aperture opening, Fraunhofer diffraction applies as long as the incoming and outgoing (in a
conical fashion) wavefronts approach being planar (i.e. differing therefrom by a small fraction
of a wavelength over the extent of the diffracting aperture or obstacle).

Figure 7.1 shows the planar wave situation applicable to Fraunhofer diffraction, two lenses

(L1, Ly) have been inserted to reposition the radiation source S and the observation position
P from infinity to a finite and physically feasible location.
A more quantitative way to appreciate this is that in the superposition of all wavelets at the
observation point P (application of the Huygens-Fresnel principle defined above) the phase
of each contributing wavelet at P, due to the differences in path traversed, is crucial to the
determination of the resultant field amplitude in P. Now if the wavefronts impinging on
and emerging from the aperture are planar, these path differences will be describable by a
linear function of the two geometric aperture variables, say a 2-dimensional position vector
7. This linearity in the aperture variables of the wavelet’s phase differences is the explicit
mathematical criterion for the prevalence of Fraunhofer diffraction!
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Figure 7.1: Fraunhofer diffraction. Credit Hecht (1987).

7.1.3 Point Spread Function (PSF) and Optical Transfer Function (OTF)
in the Fraunhofer limit

Consider the primary mirror, lens or radio dish of a telescope viewing the sky. The plane
through the rim of the primary mirror (dish) is defined as the aperture or pupil plane. A
position in this pupil plane can be specified by a 2-dimensional position vector 7. The position
of a celestial source in the sky field being observed can be specified by a unit direction vector
Q(Qx, Qy, ), its components represent the direction cosines relative to a Cartesian coordinate
system with its origin at the centre of the mirror. The z-axis is chosen perpendicular to the
pupil plane and the y and z axes are located in the pupil plane, see figure 7.2. Obviously
Q%+QZ+Q§ = 1 should hold, so if €2, and €2, are given €2, is fixed apart from its sign. However
the radiation is incident from the upper hemisphere, hence we have €2, > 0. Consequently a
source position in the sky can be described by a 2-dimensional rather than a 3-dimensional
vector Q(Hy, 6.). The angular components 0, and @, refer to two orthogonal angular coordinate
axes across the sky field under observation, they are related to the direction cosines of Q
through sinf, = Q,/(1 — Qg)% and sinf, = Q,/(1 — QZ)% In observational astronomy a
particular sky field under observation is practically always strictly limited in angular size (<
square degree). Therefore, in good approximation, we can assume that 6, ~ sinf, ~ Q, and
0, ~sinf, =~ (,.

To stipulate the essence of Fraunhofer diffraction, we reduce the telescope primary mirror
to a single pupil in the yz-plane. If we consider the image plane to be spherical at a very
large distance R — oo from the pupil plane, a celestial point source at sky coordinates
QO(HyO, 0.,) will produce a geometrical image located at —Q (0 v 0%) = —ﬁo(—ﬁyo, —0,,) in
the image plane. In this approach the telescope has been reduced to a Camera Obscura. This
has fundamentally no impact on our analysis, since in reality the actual telescope mirror only
serves to retrieve the point source image at R = oo to a practical distance: the focal length
of the telescope. As a consequence of the diﬁractign by the pupil, the image of the celestial

point source will not be limited to the direction Qg of the geometrical image, but will also
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Figure 7.2: Camera Obscura: sky and image coordinates in the Fraunhofer limit.

be blurred around this direction. (Interalia: we can omit the minus sign by simply reversing
the pointing direction of QO, i.e. now pointing towards the image plane in the anti-source
direction). Hence, if we have a celestial point source of unit intensity at a sky position QO,
the intensity of the diffraction image need to be described by a function h($ — g): the
Point Spread Function (PSF) of the diffraction-limited telescope. The Fourier transform of
h(§) — Qo) is designated the Optical Tranfer Function (OTF), i.e. we have PSF < OTF.

For the derivation, in the Fraunhofer limit, of the relation between the radiation field in the
pupil plane and the emerging diffraction pattern described by the telescope’s PSF consider
the geometry in figure 7.3. A quasi-monochromatic celestial point source is located at the
origin of the angular sky coordinates, i.e. along the direction of the z-axis (6, = 0,6, = 0).
This source, at very large distance from the telescope aperture, produces a flat wavefront in
the pupil plane. Taking the centre of the pupil as the origin, we have at every position 7 of
the pupil the same electric field signal, i.e. a fully coherent field distribution across the pupil,
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Figure 7.3: Geometry for diffraction by the telescope pupil in the Fraunhofer limit.

analytically expressed (see Chapter 3) as:
E(t) = Eo(t) - €™ with the amplitude "phasor” Ey(t) =|Eo(t)]-e*®  (7.1)

According to Huygens-Fresnel, the resulting field E (Q, t) in a direction Q on a distant image
sphere with radius R is the superposition of the contributions from all positions within the
pupil, each contribution with its own specific phase delay due to the difference in path length:

000 ~ ! Q 1270 _E@n
B0 = 5[ [ B (t—m>e2 (-22) 4 (72)
pupi

C

with R’ (Q, 7) the distance between the pupil position 7 and the image position in the direction
 (see figure 7.3), di = dydz, 1/R the amplitude damping factor due to the spherical expan-
sion of the wavefield and C' a proportionality constant. To evaluate the integral in equation

(7.2) in the Fraunhofer limit, we make two important assumptions:
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e The coherence length [, = c7., see Chapter 3, is presumed large compared to the
maximum path difference between the waves originating at different positions within
the pupil (i.e. large compared to the pupil diameter). This imposes a requirement
on the maximum allowable frequency bandwidth of the quasi-monochromatic source.
With this condition fulfilled, the complex amplitude of the image in the direction ﬁ,
E, (t - R (Q, )/ c), is independent of the pupil coordinate 7. Hence, the complex am-
plitude term in equation (7.2) can be placed in front of the integral.

e The far field approximation holds, i.e. the distance between position 7 in the pupil and
the image position in the direction {2 is linearily dependent on the pupil coordinate 7

R(Q,7) =R+ Q-7 (7.3)

with Q-7 = Quy+Q,z = 0,y + 0,z the scalar product between the unit image-direction
vector § and 7 (by definition 2-dimensional, since 7 has no x-coordinate).

Implementing these assumption, we can rewrite equation (7.2) as:

E(Q,t) = (%// 'le_ZW)fQ.FdF>
pupi

_ (9 / / P e”’“i“'FdF> B - (7.4)
R pupil plane (&

where we have introduced the pupil function P(7), with P(¥) = 1 inside the pupil and P(7) = 0
everywhere else.

Note: The notion of the pupil function can actually be implemented in a more general
fashion and makes it a versatile tool for describing the influence of an aperture on the incident
radiation field, like transmission, reflection, absorption and/or phase shifts. For example, the
pupil may act as a phase mask that introduces position dependent phase changes ¢(7), these
can be represented by putting P(7) = /(") rather than P(7) = 1 inside the pupil boundary.
Equation (7.4) is now expressed in the form of a Fourier integral, however the integral implies
a scaled Fourier transform of the pupil function P(7) with conjugate variables € and 7/).
Next, the proportionality constant C' can be determined by using the fact that the total
energy flux (= radiant flux, see Chapter 3) ®(¢) through the pupil needs to be conserved in
the diffraction image, i.e.:

R

C

L ) A 1)
// B, )]2R%G = (1) = // B@ 0Pt = 22 (75)
mage plane mage plane

Applying Parseval’s theorem to the scaled Fourier transform given in equation (7.4) we also
have:

1 ~ = = Cc? - R ,dr D(t)

- EQ,tZdQ:// “p Bit— P — 22Y (7

>\2 //image plane | ( )| pupil plane R2 | (’r) ( & )| >\2 R2 ( )
Combining equations ( 7.5) and (7.6), we obtain C' = 1/\.

Substituting C' in equation 7.4 and writing the Fourier integral as a "true” (i.e. non-scaled )
Fourier transform in the conjugate variables  and ¢ = 7/ (beware: d¢ = di’/\?), results in:

B(,1) = K%)//pupﬂplanep(f) e—%iﬁfdf} Be-By - admee-Ly @

C Cc
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The 2-dimensional conjugate vector variable 5 has the dimension radian™' and represents a
specific spatial frequency on the sky expressed in periods/radian. The dimensionless

—

function a((2) is called the amplitude diffraction pattern:

a(6) = (%) / / PO e2i%C 47 ith o(3]0,0]) = (%) (W) (7.8)

—

The dimensionless quantity a(€2[0,0] entails the product of the amplitude damping term
1/R, scaled to )\, and the geometrical pupil area, scaled to A2

Equation (7.8) shows a most important result regarding the diffraction phenomenon: in the
Fraunhofer limit the amplitude diffraction pattern, with the proper normalisation factor at

—

2[0,0], can be obtained by taking the Fourier transform of the pupil function, i.e.:

(@) o (%) P(7/2) (7.9)
This Fourier pair shows that the diffraction image depends on the size of the pupil, expressed
in the number of wavelengths .

The derivation of the amplitude diffraction image ZL(Q) was done for a quasi-monochromatic
point source at the origin of the angular sky coordinates along the direction of the z-axis. A
similar point source at an arbitrary position (o on the sky yields a diffraction image &(Q—Qg),
i.e. the same diffraction image but displaced to the geometrical image position Qg. This is an
obvious result, and straightforward to derive.

Equation ( 7.8) expresses the distribution of the amplitude diffraction pattern. Taking the
square of the absolute value of this expression yields the intensity diffraction pattern, defined
as the telescope’s Point Spread Function (PSF).

Intermezzo: Power flux density transported by an EM-wave

The energy streaming through space in the form of an electromagnetic wave is shared between
the constituent electric and magnetic fields.

The energy density of an electrostatic field (e.g. between plates of a capacitor) pz = €,€ |E 12/2
(dimension Joule/m?), with |E| the magnitude of the electric vector (dimension V/m) and
€0 the vacuum permittivity (8.8543 - 107 '2 Asec/Vm). Similarly, the energy density of a
magnetic field (e.g. within a toroid) equals pz = |B|2/(2ptrp10) (dimension Joule/m?3), with
|B| the magnitude of the magnetic vector (dimension Tesla = Vsec/m?) and g the vacuum
permeability (47 - 1077 Vsec/Am).

The wave equation for a plane electromagnetic wave traveling along the x-direction in
vacuum is given by:

OP?E(z,t) 1 9*E(z,t) d O?B(z,t) 1 9’B(z,1)
052 &2 o T T2 T 2 op
for the electric field wave and the magnetic field wave respectively. The magnetic field wave
travels in a plane perpendicular to the electric field, both the electric field and the magnetic
field directions are perpendicular to the direction of propagation (x). The plane wave solution
can be expressed by a harmonic function, using a complex scalar representation:

(7.10)

E(z,t) = Eoe"?W=/Y and B(z,t) = Bye' 2 ¥t=2/3) (7.11)

Consistency with Maxwell’s equations requires that for the EM-wave holds pz = p. Hence,
from the above, we have By = Ey/c.
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The flow of electromagnetic energy through space associated with the traveling EM-wave is
represented by the Poynting vector § = (1/p0)E x B, a vector product that symbolizes the
direction and magnitude of the energy transport per unit time across a unit area (e.g. in
units Watt m—2). The vector magnitude |S| = |E||B|(sin¢)/uo equals |E||B|/po, since the
magnetic field is perpendicular to the electric field (¢ = 7/2). Representing the actual wave
signal by taking the real part of expressions (8.75) we get:

S| = EyBycos® 2n(vt — z/N) = egcES cos® 2r(vt — z/\) = (eo/ug)%Eg cos? 2m(vt — /)
(7.12)

The average power flux density for an ideal monochromatic plane wave, 1(t) equals |S(£)|:

T L2 L E§ 3§
I(t) = (eo/po)2 Ejcos? 2m(vt — z/\) = (60/M0)27 = 2.6544 - 10 B3 (7.13)

expressed in Watt/m? for Ey in Volts/meter.

An idealised monochromatic plane wave is represented in the time domain by an infinitely long
wave train and is by definition fully polarised. As has already been discussed, an unpolarised,
quasi-monochromatic, radiation field from a thermal source can be described by a complex
expression for the electric field E (t), comprising a harmonic oscillation at an average frequency
7 modulated by a slowly varying envelope, accomodated by the phasor Ey(t), i.e. E(t) =
Eoy(t)- '@ The average power flux density for this wave then follows from the expectation
value of the product E(t)E*(t):

I(t) = (eo/uo)%E{E(t)E*(t)} = 2.6544-10’3E{|E0(t)|2} (7.14)

Since we are primarily concerned with relative power fluz densities generated by these traveling
waves within the same medium, we can disregard in what follows multiplication with the
numerical constant in expression (8.78), since this (deterministic) quantity is only of relevance
for assessing the absolute numerical value of the power flux density and bears no influence
on the description of the stochastic nature of the signals. In practical computations, this
constant should of course be applied!

End intermezzo: Power flux density transported by an EM-wave

The brightness distribution, S/\(Q,t), of the cosmic source under observation is convolved
with this PSF to obtain the diffraction-limited source image dA(Q,t). Similarly, the Fourier
transform of the source brightness distribution, S )\(5 ,t), is multiplied with the Optical Transfer
Function (OTF) of the telescope to obtain the spatial frequency spectrum of the diffraction-
limited source image Dy (,t). Hence we have:

dy (G, 1) = // ha(G = ) sy(@ 1) dF and

In the above relations we have added an index A to stipulate the wavelength dependence of
the PSF and the OTF.
Multiplying ( 7.8) with its complex conjugate yields the mathematical expression for the PSF

—

h(Q2):

PSF = (8) = a(®) - a"(d) = |a(®) \2 = ‘ <%>// P e Cal 2
peie (7.16)
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To obtain an expression for the OTF H ,\(5 ), taking the general case of a complex pupil
function, we can use the following relations (verify this yourself!):

i) o (%) PE) and  @(8) o (%) P (=0) (7.17)
Hence, by applying the convolution theorem, we get:
- o A 2 o o
a(f)-a* () < <R> P(C) + P(=0)] (7.18)

In the common case of a centrally symmetric pupil, the autoconvolution of equation (7.18) is
just the autocorrelation, and so we can write:

—

OTF = Hy(() = %// P PE= M) (7.19)

with the vector variable of the integral rescaled to the pupil coordinate 7. (The complex
conjugate of the pupil function in equation (7.19) has of course no meaning in case the pupil
function is real)

Equation (7.19) characterizes the response function of a low pass filter for spatial frequencies:
the transmission continually decreases with increasing spatial frequency, at a certain value
Afmax, the mutually displaced pupil functions in (7.19) will no longer overlap and higher
spatial frequencies will not be transmitted.

Important notion: a finite pupil acts as a low pass filter for the spatial frequencies in the
brightness distribution of the celestial object observed. Given a fized size of the pupil: the
longer the wavelength the lower the cut-off frequency ()\|5| = constant).

Moreover it is worth noting that, although non-circular pupils are rarely encountered in as-
tronomy, expressions (7.16) and (7.19) are applicable for arbitrary pupil geometries.

7.1.4 Circular pupils

Circular pupils play a central role in astronomy, so this warrants a special description. Given
the circular symmetry, the pupil function can be expressed as a function of a scalar variable
p with the aid of the 2-dimensional circular box function II(p), where II(p) = 1 for |p| < 1/2
and II(p) = 0 for |p| > 1/2. The Fourier transform of this function involves the first order

Bessel function J; (z):
1 [Ji(m0
I(p) < 5[ 1(0 )} (7.20)

in which the scalar variable 0, replacing the angular direction vector ﬁ, represents the circular
symmetric diffraction angle. Taking a telescope diameter D and applying the scaling law for
Fourier transforms, we have:

I (%) & H%} (7.21)

Substituting for p the spatial frequency variable (now also a scalar) p = p/A, the amplitude
of the diffracted field follows from equation (7.9):

a(0) & (%) I (%) (%) EW(D/A)Z} [%} (7.22)
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Figure 7.4: The Airy brightness function normalised to unit intensity at 6 = 0. Credit Hecht
(1987).

Hence, introducing the reduced variable u = w0D/\, we arrive at the expression for the
diffraction-limited PSF for a circular telescope:

psr = a0 = (5) (Saop?) P20

The first term in the expression at the right-hand side is the normalisation of the PSF for
undiffracted light, i.e. for # = 0. It involves the dimensionless quantity that accomodates
the attenuation factor (scaled to ) of the radiation energy due to the spherical expansion
of the wavefield in the Fraunhofer limit and the geometrical area of the circular aperture,
scaled to A\>. The second term is often called the Airy brightness function and has a ring-like
structure. We can designate this term as h (), the point source response function normalised
to unit intensity at 6 = 0, i.e.:

ha(6) = {%(“)]2 - [%r (7.24)

2
(7.23)

The OTF can be derived from the autocorrelation of II(Ap/D):
A 2 \p \p
ore = () [(3) 2 (3)
D\? [ Ap Ap A 2 %-I Ap
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Figure 7.5: The 2-dimensional Airy brightness function for the diffracted intensity. Credit
Hecht (1987).

Normalization to unity response for zero frequency (p = 0), by dividing with the telescope
area and disregarding the 1/R? attenuation factor resulting from spherical expansion of the
diffracted field in the Fraunhofer limit, yields the spatial frequency response function H)(p)
of the telescope:

o = 2[anon () - () (1- g)ﬂ n(2) e

Figure 7.4 and figure 7.5 show the Airy diffraction patterns in 1- and 2-dimensional display.
The FWHM of the central peak is roughly equal to A\/D radians, around this main peak ring
shaped secondary maxima are present that decrease monotonously in strength. Figure 7.6
shows the OTF resulting from self-convolution of the circular pupil function: the shape is
referred to as the ”Chinese hat”, the transmission of spatial frequencies decreases almost lin-
early up to the cut-off frequency D /A, beyond this frequency the transmission of the telescope
equals zero.
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Figure 7.6: The Optical Tranfer Function (OTF) for a circular aperture with diameter D. The
3d-shape is sometimes referred to as the Chinese Hat function.

7.1.5 Rayleigh Resolution Criterion

The image of two, equally bright, point sources with an angular separation € is the incoherent
superposition of two identical Airy functions. The limiting angle at which the two sources
can be separated has been fixed at the value where the maximum of the one Airy function
coincides with the first zero of the other Airy function. The first zero of J; (u) occurs at a value
of the reduced variable u = ug = 3.832, this relates to an angle § = 6y = 1.22\/D. This
angular value is often used to specify the angular resolving power or discriminating power of
the telescope pupil and is commonly referred to as the Rayleigh criterion. This criterion is only
approximate and much less quantitative than the PSF hy(0) for a circular pupil. Moreover,
in certain cases it is possible to resolve two point sources closer than 6y, for example in the
case of the two components of a double star, if the measurement of the image is made with
excellent signal to noise ratio (larger than a few hundred). In such a case the diffracted image
profile I(0) can significantly differ from the profile of a single point source hy(€) even if the
angular separation of the two components is less than 3. On the other hand, if the signal
to noise ratio is poor, or if the two sources have greatly different brightness, the value of
0o might be largely insufficient to reliably extract separate source contributions. The latter
case is certainly applicable to crowded source fields with high brightness contrasts between
the observed field sources. In that case the value of 6y can be severely compromised and the
actual resolving power will be significantly reduced in a case specific fashion!
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7.1.6 Complex pupils

In expression ( 7.4) the pupil function was introduced in its simplest form, i.e. P(¥) = 1 inside
the pupil and P(7) = 0 everywhere else. We already noted at that point that the concept of
the pupil function is much more general, we shall elaborate shortly on this here. P(7) = 1
implies that all points within the pupil emit the same field amplitude E(t) = Eo(t) - 2™, If
we now more generally introduce within the pupil a complex pupil function P(F), the same
treatment of the Fraumhofer diffraction holds as before. However, each pupil point now emits
its own specific field amplitude and phase determined by the complex pupil function:

E(7,t) = P(F)Ey(t) - 2™ (7.27)

The derivation of the amplitude diffraction pattern remains unchanged (verify this youself)
and we have (see also equation( 7.8)):

) = (%) //pupu planep(g) G_ZWiQfdg (7.28)

Complex pupil functions can be generated in several different ways, we give here two examples.

e An optical mask inserted in the aperture.
Consider a plane wave incident on the pupil plane. Cover the aperture with a foil with
a position dependent transparency (determines the amplitude of P(7)) and a position
dependent thickness or refractive index, which determines the phase of P(7).

e Microwave phased-array antenna’s.

Antenna’s for radar waves and microwave communication often comprise a flat plane,
filled with a large number of radiators, like waveguide exits, dipoles etcetera. They
radiate according to expression (7.27). The radiation field emitted from the pupil }5(77)
can be regulated electronically, in particular its phase. The radiation beam generated
by the collection of individual radiators is defined by the distribution of radiation power
over the sky direction vector €. If we have P(7) = 1 this distribution is given by the
Airy function centered around 0 = 0, i.e. perpendicular to the rz}diator plane. If we
select a pupil function with a linear phase dependence, G = 27/ A, the radiation
beam rotates towards sky direction ﬁo, commensurate with the Fourier shift theorem. In
this way the direction of the radiation beam can be very rapidly controlled electronically
in two angular dimensions without any mechanical rotation devices!

7.2 Other limits to image quality

7.2.1 Optical aberrations

A common and severe aberration of both lenses and mirrors is spherical aberration. This
aberration arises from the fact that lens or mirror annuli with different radii have different
focal lengths. In the case of a spherical mirror this aberration can be completely eliminated
for rays parallel to the optical axis by deepening the spherical mirror surface to a paraboloidal
surface. However a paraboloidal mirror suffers from another aberration called coma. Coma,
causes the images for objects that are not located on the optical axis to consist of a series
of circles which correspond to the various annular zones of the mirror surface, these circles
are progressivily shifted towards or away from the optical axis giving rise to a characteristic
pear-shaped image blur (see figure 7.7). The figure also shows the condition that needs to be
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Paraxial ray

Figure 7.7: Coma error for an off-axis object. The characteristic "pear-shaped” ray distri-
bution near the off-axis geometrical image point is indicated in the lower right-hand corner.

Credit Kitchin (1987).

obeyed to reduce coma to zero in an optical system, the Abbe sine condition:

sinf  Oparac

sin ¢ B Pparaz

= constant (7.29)

where the angles are defined in figure 7.7.

The severity of the coma aberration at a given angular distance from the optical axis is in-
versely proportional to the square of the focal ratio of the telescope. Therefore, the effect
of comatic aberration can be significantly reduced by employing as large a focal ratio as
possible. Examples of optical designs with large focal ratios comprise the Cassegrain and
Ritchey-Chretien systems, we shall dwell on these shortly in the following paragraph since
they constitute the most common format for large telescopes in astronomy.

The configuration of the Cassegrain system is sketched in figure 7.8. It is based on a
paraboloidal primary mirror and a convex hyperboloidal secondary mirror, the near focus
of the secondary hyperboloid coincides with the the focus of the primary paraboloid. The
Cassegrain focus is the distant focus of the secondary mirror. The major advantage of the
Cassegrain system is its telelens characteristic: the secondary hyperboloid expands the beam
from the primary mirror so that the focal length of the Cassegrain system becomes several
times that of the primary mirror. The coma aberration is consequently substantially reduced
to that of a single parabolic mirror with a focal length equal to the effective focal length of
the Cassegrain. The beam expanding effect of the secondary mirror makes that Cassegrain
telescopes normally work with focal ratios between f12 to f30, although the primary mirror
is only f3 or f4! Figure 7.8 shows the images for a 25 cm primary in a f4/f16 configuration.
Displayed are the theoretical on-axis geometrical image point, the on-axis Airy disk arising
from diffraction by the 25 ¢m primary mirror, and the coma-dominated pear-shaped image
blur at an off-axis angle of 0.5 degrees (the angular scale of 5 arcseconds is given for reference
to the actual angular sizes of these images).

A large improvement in image quality can be obtained if the Cassegrain is modified to a
Ritchey-Chretien design. The optical design is the same as for the Cassegrain configuration
with the exception that the primary mirror is hyperboloidal rather than paraboloidal and a
stronger hyperboloid is used for the secondary. With this design both spherical aberration
and coma can be corrected, resulting in an aplanatic system. The improvement in the im-
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Figure 7.8: Upper panel: Cassegrain configuration with parabolic primary and hyperbolic sec-
ondary mirror. Lower left: comparison between the on-axis Airy-disk and the coma-dominated
image at an off-axis angle of 0.5 degrees. Lower right: improved off-axis performance for a
two-hyperboloid Ritchey-Chretien configuration. Credit Kitchin (1987).

age quality is also displayed in figure 7.8 for a 50 cm Ritchey-Chretien telescope with the
same effective focal length as the 25 cm Cassegrain. In fact, the improvement relative to the
Cassegrain system is larger than the comparison of the images displayed in figure 7.8 suggests,
since a 50 cm Cassegrain would have its off-axis image twice the size (i.e. four times the area)
and the on-axis Airy disk half the size (i.e. a quarter times the area) shown in the figure. The
optics employed in the Hubble Space Telescope (2.4 m primary mirror) is a Ritchey-Chretien
design.

A Cassegrain system can however be improved considerably by the addition of corrective op-
tics just before the focus. This corrective optics comprises lens assemblies whose aberrations
oppose those of the main Cassegrain system, they involve aspheric surfaces and/or the use of
exotic materials like fused quartz. Hence, images can be reduced to less than the size of the
seeing disk (see next paragraph) up to fields of view of the order of one degree. For a more
extensive discussion of telescope designs we refer here to Kitchen (1998), pages 62-80.

7.2.2 Atmospheric degradation: speckle images

The intrinsic quality of modern optical telescopes in terms of their imaging performance can be
made very close to the diffraction limit, certainly when taking into account recently developed
sophisticated control systems for optimizing the figure of the mirror surface by employing
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Figure 7.9: Left panel: short exposure speckle image. Right panel: long exposure showing the
smoothed “seeing” disk of the observed point source.

active corrections for bending under gravity of the mirror mass and temperature gradients
over the area, the so called active optics. However, as was already pointed out in Chapter
2, in ground-based telescope systems the image quality is limited by turbulent motions in
the atmosphere, giving rise to a randomly varying value of the refractive index n(7,t) in the
air columns over the pupil area. Horizontal scales for these fluctuations range from several
centimeters to several meters. If an undistorted flat wave front enters the atmosphere, three
main effects caused by atmospheric turbulence can be identified in the pupil plane of the
telescope:

e Variations in amplitude of the wavefront (i.e. lighter and darker brightness patches to
the "eye”) corresponding to concentration or spreading of the wavefront energy (scin-
tillation,).

e Variation in the angle of the mean tangent plane to the wavefront causing angular motion
of the image. Characteristic wavefront slopes are of the order of a few pum’s/meter.

e Reduction of spatial coherence of the wavefront across the pupil plane due to random
fluctuation of the phase, that leads to smearing of the image, resulting in image sizes
much larger than from diffraction alone.

These effects can be described by introducing a new, instantaneous, pupil function which is
random and complex:

P(7,t) = P(F)y(7,t) (7.30)
in which P(7) represents the simple geometrical pupil function introduced in equation (7.4)
and (7, t) represents a wavefront that randomly varies in amplitude and phase. During a
very short exposure, of the order of a few milliseconds, one may consider the wavefront frozen
in its instantaneous shape. If we neglect for the moment the amplitude fluctuations (i.e.
scintillation), we can write:

(7, 1) = e ¢ (7.31)

in which the phase of the wave, ¢(7,t), is a random variable whose spatial statistical distri-
bution is determined by the properties of the randomly varying value of the refractive index
in the turbulent cells of the overlaying atmosphere. If we consider an atmospheric layer of
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Figure 7.10: Speckle formation resulting from rays leaving perpendicular ”equal-slope” areas
on the wavefront in the direction of a specific speckle.

thickness Ah that is large compared to the scale size of the turbulent cells, so that Gaussian
statistics apply (i.e. the central limit theorem), the phase shift produced by the refractive

index fluctuations is:
h+Ah

S(F1) = k / n(,t, 2)dz (7.32)
h

with n(7, t, z) the refractive index random variable, z the vertical coordinate and k = 27/
the wave number. This randomly varying phase shift describes the effects of angular motion
and smearing of the image, the amplitude variations may often be neglected if the turbulence
is not very severe.

Hence we have now an instantaneous, random, pupil function:

P(7t) = P(f)e Y (7.33)

which can be used to derive the point source response of the telescope due to atmospheric
turbulence. The instantaneous image of a point source is obtained from the Fourier transform
of the autocorrelation of the instantaneous pupil function. Consequently, the image will be
an intensity distribution in the focal plane of the telescope, that randomly changes shape
with a frequency of 200 to 300 times per second, determined by the coherence time 7. of
the atmosphere. For exposures shorter than this coherence time, the wavefront is considered
frozen in its momentary shape, the associated momentary intensity distribution comprises
an image with a ”speckle” structure as shown in figure 7.9. Every speckle has a diffraction
limited PSF of A\/D, e.g. 0.1 arcseconds for a telescope diameter of 2 meters at A = lum.
In good approximation one may consider each speckle to be the image resulting from rays
leaving perpendicular ”equal-slope” areas on the wavefront in the direction of that specific
speckle (see sketch of ray paths in figure 7.10). The speckle pattern randomly fluctuates on
the same time scale as the wavefront due to the random phase fluctuation across the pupil
plane, moreover the speckle pattern as a whole jitters as well following the variations of the
mean tangent plane to the wavefront (the angular motion).

125



Figure 7.11: Left frame: o 100 millisecond exposure on the bright T Tauri star V807 Tau,
the speckle structure is clearly seen. Middle frame: a 40 second exposure on the same source,
the speckles have averaged to a smooth fuzzy source. Right panel: Speckle-processed image
revealing the binary nature of the source.

The technique of speckle imaging requires taking many short exposures, which ”freeze-out”
the effects of the atmosphere. All short exposures are Fourier transformed and averaged in
Fourier space to preserve the high-resolution (i.e. diffraction limited) information present in
the individual speckle images. The averaged spatial frequency spectrum is then subjected to
an inverse Fourier transform, resulting in the final image. In the picture shown in figure 7.11,
the left frame shows a 100 millisecond exposure on the bright T-Tauri star V807 Tau, the
speckle structure caused by the atmosphere is clearly evident. The central frame displays a
40 seconds exposure on the same source, the speckle structure has averaged out to a smooth
fuzzy source image. The right panel shows the result of Fourier-processing of the series of
speckle images, demonstrating that this star is actually a binary!

7.2.3 Seeing: the Fried parameter

As is evident from figures 7.9 and 7.11, long exposures combine speckle images into a severely
broadened image, this broadening is called seeing. The resulting smoothed PSF, the so-called
seeing disk, is slightly broader than a single speckle pattern and amounts to =~ one arcsecond.
This seeing-value of one arcsecond corresponds to the diffraction limit of a 10 cm diameter
telescope at A = 0.5 um. The merit of using larger optical telescopes is, therefore, not primarily
sharper images but sensitivity owing to their much larger light collecting power!

The observed intensity at each point of a long-exposure image is simply the time-averaged
instantaneous intensity I(}) = B {I(Q, t)}:

I} = B{s(®) « n(,n)} = s() « B{n(, 1)} (7.34)

with s(€2) the intensity of a constant quasi-monochromatic source and h(€},¢) the randomly
variable PSF.

The spatial frequency spectrum of the seeing disk in long exposure images follows from the
computation of the normalised mean OTF H (5 ) =E {H (5 , t)} which, according to equation

(7.19), equals the normalised mean autocorrelation of the pupil function in the case of centrally
symmetric pupils:

1 21\ —i(C ) (P _ i =C o) g7
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Figure 7.12: Influence of atmospheric seeing on a sky image. Left: image obtained by a ground-
based telescope, resolution 1.1 arcseconds dominated by atmospheric turbulence. Right: the
same sky field imaged by the 2./ meter Hubble Space Telescope, resolution diffraction limited
to 0.05 arcseconds. Credit Space Telescope Science Institute.

(7.35)

with 5’ =7/ 55 /A and df’ = di"' /\? the scaled pupil position vectors and differential
area, normalised to the wavelength A\. The phase fluctuations qb(g? , t) over the wavefront in
the pupil plane can be regarded as resulting from a large number of perturbations in the
overlaying atmosphere, which are mutually phase independent. According to the central limit
theorem the distribution of the random variable (]5(5 , t) will be Gaussian with zero mean over
both time and space. If x is a real Gaussian random variable, it is straightforward to show
(verify this yourself!) that:

(7.36)

E {exp(iz)} = exp [—%E{xQ}

and consequently we have for the expectation value in the integrand of equation ( 7.35):

—

E {oxp [0 6) - 9T~ 0]} = exp |3 B{[0(T"0) - 0" - C0]'}]
= e [-5 Q0] (7.37)
where we have introduced a structure function for the phase:
Qo(0) = B{[s¢"0) - 0¢" - Co)]"}
=2[B{g*(" )} — B{a(" )" - . )}] (7.38)
This structure function for the phase distribution over the wavefront can be derived from

the structure function of the refractive index for homogeneous and isotropic turbulence. We
shall forego this calculation here and refer to the treatment by F. Roddier: The Effects of
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Atmospheric Turbulence in Optical Astronomy (Progress in Optics XIX,281,1981). The phase
correlation on the perturbed wavefront expressed by equation (7.38) can be characterised by

a wavelength dependent correlation length r. = A(.. A detailed computation involving the
afore mentioned structure function of the refractive index yields:
5/3 =\ 5/3
, T 7 Al¢
an =2(M" = a0 -2 (%) (7.39)
Te Te
with:
|' 00 -| —3/5
e = [1.45 k? / C2(z)dz J (7.40)
0

in which the wave number k = 27 /) and where C2(z) represents the refractive index structure
constant, that strongly depends on the altitude z, typical values range from 10714 m~2/3 near
the ground decreasing to 1077 m~2/3 at an altitude of 10 km.
The common case of a circular pupil with a diameter D > r. yields for the mean value of
the normalised OTF:

~ Ap\ /3

Alp) = exp— <—> (7.41)

Te

where we have again used the scalar spatial frequency variable p following the limitation to
circular symmetry. The point source response is the Fourier Transform of H (p).
It is customary to express the degraded resolution in terms of the diameter Dp of a diffraction
limited circular pupil which would give an image of the same angular extent as the seeing disk.
Dp is the so-called Fried parameter, which can be computed from:

7H(p)pdp = Dj//\% [arccos <g—i> - (1;\—1;> (1 - (g—i>2>%] pdp (7.42)
0 0

For the lefthand integral in equation (7.42):

[o oo (2] .9
0

we can introduce the variable x = [(Ap)/ 7,015/ % and rewrite this as:
o
3 e 1/5 —x 3 e 6 re
Introducing a change of variable z = (Ap)/Dp, we can rewrite the righthand integral of

equation (7.42) as:

1
2 D? T D?
— 22 1—2> = (2Z& <—>:—F 4
0/<xarccosw x4/ ( x?) ) dx — 32 16 Tz (7.45)

Hence, the Fried parameter relates to the phase correlation length r. on the perturbed wave-
front as:

D% = 44r) = Dp = 2lr. (7.46)
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and, implementing expression (7.40), we find:

) —3/5 0 —3/5
Dp = [0.423 k2 / C2(z) dz] = 0.185X5/° / C2(z) dz] (7.47)
0 0

Subsequently, expressing the phase structure function Q4(7) and the mean OTF H(p) for a
circular aperture in terms of the Fried parameter Dy, we can rewrite equations (7.39) and
(7.41) as:

. |F| 5/3 B )\p 5/3
Qu(i) = 6.88 (—) Hp) = exp [_3.44 (—) ] (7.48)
Dp Dp
From this we see that the spatial frequency cut-off p ~ Dp/\ (H(p) ~ 0.03), consequently
the angular resolution A@ ~ \/Dp. This value is often called the seeing angle or simply the
seeing. A typical value for Dp in the visible range of the spectrum ranges between 10 and
20 cm. So if for instance the seeing at the Keck 10-m telescope is 10 c¢m, the image quality
is no better than that provided by a 10-cm amateur telescope. From expression (7.47) it is
clear that the Fried parameter is highly chromatic: ~ A%°. This means that the coherence
area rapidly increases towards the infrared: a D of 20 cm at 0.5 pm increases to almost 1.2
meters at 2.2 pm.

7.2.4 Real time correction: principle of adaptive optics

Under certain conditions, it is possible to restore spatial frequencies, filtered by the atmo-
sphere, in real time. This is the aim of adaptive optics, which has developed very rapidly
since 1985.

An atmospheric compensation system employing active optics contains three main compo-
nents: a sampling system, a wavefront sensor and a correction system. The sampling system
provides the sensor with the distorted wavefront, in astronomy this normally entails a partly
reflecting mirror, which typically diverts &~ 10 percent of the radiation to the sensor, allowing
the bulk of the radiation to proceed to form the main image. Many adaptive optics systems
use a guide star rather than the object of interest to determine the distorsions of the wave-
front. Inevitably, the guide star must be very close in the sky to the object of interest, or
its wavefront will have undergone a different atmospheric distorsion. The region of the sky
over which the images have been similarly affected by the turbulent atmosphere is called the
isoplanatic area or patch. This can in practise be as small as a few arcseconds. The notion
of the isoplanatic area is displayed in the left panel of figure 7.13. This small angular size
of the isoplanatic area means that only very few objects have suitable guide stars, therefore
artificial guide stars have been produced. This is being accomplished by the production of a
so-called optical echo: a laser is tuned to one of the sodium D-line frequencies and excites the
free sodium atoms in the atmosphere at a typical height of 80-90 km. The glowing atoms
appear like a star-like point close to the object of interest. Laser-produced guide stars possess
two inherent problems. Due to the relatively low height of the laser-produced guide star, the
light path is slightly conical and may still differ substantially from the light path traversed
by the radiation from the object of interest. Secondly, the outgoing laser beam is affected
by atmospheric turbulence as well, i.e. the guide star moves with respect to the object of
interest, again resulting in a blurred image during long exposures.

A wavefront sensor detects the distorsions in the incoming wavefront provided by the beam
splitter. Figure 7.13 shows the so-called Hartmann sensor, frequently used in astronomical
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Figure 7.13: Left: the isoplanatic area. Right: The Hartman array sensor for generation of
the error signals caused by turbulence induced “folds” in the flat wavefronts arriving from a
distant point source. Credit Kitchin (1987).

adaptive optics systems. It employs a two-dimensional array of small focussing lenses, each
of which providing an image onto an array-detector. In the absence of wavefront distorsions,
each image is centered on an array-element. Distorsions in the wavefront will displace the
images from the detector centres, the degree of displacement and its direction is used to gen-
erate error signals which are fed to a correction mirror. Since the atmosphere changes on a
timescale of the order of ten milliseconds, the sampling, sensing and correction has to occur
in a millisecond or less. The simplest systems only correct for the overall tilt of the wavefront,
i.e. the mean tangent plane change of the wavefront that causes angular motion of the image.
This is accomplished by suitably tilting a plane or segmented mirror placed in the light beam
of the telescope in the direction opposite to the angular motion. A similar technique is the
so-called shift and add methodology, in that case multiple short exposure images are shifted
until their brightest points are aligned and then added together. More sophisticated tech-
niques also involve fine scale displacement corrections by employing a thin mirror capable of
being distorted by piezo- electric or other actuators placed undernearth the deformable mirror
surface. The error signals of the sensor elements are then used to distort the mirror in the
opposite manner relative to the distorsions of the incoming wavefront. Currently operating
systems using this approach can achieve diffraction-limited performance in the near-infrared
for telescopes of 3 to 4 meter diameter, i.e. &~ 0.2 arcseconds at 2 pm.

The efficiency of an adaptive optics system is measured by the so-called Strehl ratio, which is
the ratio of the intensity at the centre of the corrected image to that at the centre of a perfect
diffraction-limited image of the same source. Strehl ratios of 0.6 to 0.8 are currently being
achieved.
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7.3 High energy imaging

7.3.1 Grazing incidence telescopes

Wavelengths shortward of ~ 50 nanometer and longer than ~ 0.1 nanometer, i.e. the regime
of extreme-ultraviolet (EUV) and X-radiation, are absorbed by metallic surfaces at normal
incidence, the only way to reflect and focus this radiation is to employ total reflection, since
the refractive index of metals at these wavelenghts is slightly less than one. We can write the
refractive index as:

n=1-0—48 with ¢ <1 (7.49)

0 being a measure for the reflection and § a measure for the absorption. If we only consider
the real part of n, referring to reflection, we have n = 1 — . Employing Snell’s law, the
critical angle for total reflection follows from:

€080 = 1 =0 = O, = V26 (7.50)

where the cosine term can been approximated by the first terms of the Taylor series, since § <
1. Typical values for the critical angle, depending on wavelength and specific metal(coating),
range from 1 to 3 degrees. These small angles imply that focussing optics for this wavelength
range requires very high incidence angles. It is therefore commonly referred to as grazing
incidence optics, the grazing angle constitutes the angle between the incoming ray and the
metal reflecting surface (i.e. the complement of the angle of incidence). Figure 7.14 shows
the reflection efficiencies ¢, for several grazing angles, as a function of wavelength in A-units
for gold as the reflection coating deposited on the mirror substrate.

Several grazing incidence telescope configurations have been devised, the most practical
use has been a design by Wolter comprising adjacent annular sections of a paraboloidal and
a hyperboloidal surface irradiated at grazing incidence. This so-called Wolter-1 telescope is
displayed in figure 7.15, the focus of the paraboloid coincides with the focus of the ”virtual”
part of the hyperboloid and the telescope focus is the focal point of the actual hyperboloidal
annulus. Obviously, like in the case of the Cassegrain system, the hyperboloidal surface acts
as a correction element for the large coma error of a single paraboloid for off-axis radiation. In
practise one can obtain resolutions of the order of 1-10 arcseconds over fields of view (FOVs)
of several arcminutes. Another design, also due to Wolter, is shown in figure 7.16. In this
case the grazing incidence rays reflect from the inner surface of the paraboloidal mirror and,
consecutively, from the outer surface of the hyperboloid. This so-called Wolter-1II configuration
is occasionally used for soft X-ray and Extreme Ultraviolet imaging, the typical grazing angles
are larger than in the case of the Wolter-1I configuration, however the design can be much more
compact. The location of the foci of both the individual annuli and of the full telescope is
indicated in figure 7.16. A drawback of grazing incidence optics is the fact that the aperture
of such telescopes is only a thin ring in projection, since only the radiation incident onto the
paraboloidal annulus is transmitted to the focus. In order to increase the effective area, and
hence the sensitivity of the telescope system, several systems with different radii are nested
inside each other in a confocal fashion. This is schematically shown in figure 7.17.

It is important to realise that at these short wavelengths it is normally no longer the
diffraction that limits the resolution of the telescope (A/D very small), but rather the accuracy
of the surface figure such as roundness and profile. Moreover, the micro-finish of the reflecting
surface (i.e. the microscopic surface roughness) plays a dominant role in the potential quality
of the image: a surface with irregularities scatters rather than reflects the incoming beam,
this will show up as "wings” in the PSF that might contain a substantial fraction of the beam
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Figure 7.14: Reflection efficiencies of gold for several grazing angles as a function of wave-
length (in /i) of the incoming radiation beam. The ordinate scale for the efficiency € ranges
from 0.01 to 1. Credit Giacconi & Gursky (1974).

energy. Surface smoothness of the order of 0.1 nanometer has be achieved, providing very
high quality X-ray mirrors.

Grazing incidence mirrors can be produced in a variety of ways, either by direct machining
and polishing or by a so-called replication technique. In the latter case a thin metal reflective
layer is deposited on a highly polished (i.e. X-ray quality) mandrel of the inverse shape to
that required for the mirror. Subsequently electro-deposition of e.g. nickel onto the mandrel
is applied to built up a self-supporting mirror shell. When the appropriate thickness for the
required mechanical integrity of the shell has been reached, the shell can be separated from
the mandrel by thermal shock (cooling).

Grazing incidence mirrors with intrinsically much lower, but nevertheless still very useful,
angular resolution of the order of 1-3 arcminutes can be fabricated from nesting foil mirrors
that approximate the paraboloidal and hyperboloidal surfaces by truncated conical surfaces.
Thin aluminum foil with a lacquer coating to provide the required smoothness and reflection
efficiency has been successfully employed for this purpose, the conical approximation much
reduces the complexity of the fabrication process and therefore the costs. Obviously, given
the mandatory short length of the mirror cones to retain, at least geometrically, the required
resolution, many hundreds of foil shells need to be nested to reach a sufficiently large effective
aperture!
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Figure 7.15: Grazing incidence optics: Wolter-1 configuration. Credit Kitchin (1998).

7.3.2 Non-focussing optics: beam modulation

If the wavelength of the incident radiation beam becomes smaller than ~ 0.1 nanometer, it
becomes increasingly difficult to use reflection optics. Employing multi-layer coated mirrors
still allows focussing of radiation in selected wavebands down to wavelengths as short as 0.02
nanometer, but not much further. Therefore, images will have to be obtained by other means.
In the photon energy range where the photo-electric effect is still dominant, imaging can
be accomplished by applying the coded mask technique. In the photon energy range where
Compton scattering and pair creation are the dominant interaction processes, the kinematics
of the interaction processes can be used to extract directional information to built up images.
In that case telescope and detecting device have become one. We shall treat these latter two
techniques under Gamma-ray imaging, and shall first briefly describe the principle of coded
mask imaging.
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Figure 7.16: Grazing incidence optics: Wolter-1I configuration. Credit Kitchin (1998).

Coded mask imaging is based on an old principle, the Camera Obscura, where a hole in a
mask allows an image to form on a screen. The smaller the hole , the better the angular
resolution, but unavoidably at the expense of the irradiance. Moreover, if the hole becomes
too small, diffraction effects will degrade the resolution. In the X-ray domain diffraction
effects become negligible considering the small wavelengths involved, and the irradiance level
can be enhanced by employing a large number of holes, so that the transmission of the mask
may reach a value of ~ 50 percent. The resulting image from such a multi-hole mask is a
linear superposition of the images produced by each individual hole. The distribution of the
holes needs to be done in such a way that the brightness distribution of the illuminating
celestial source can be reconstructed in an unambiguous fashion from the measured intensity
distribution in the registered image. The appropriate pattern of holes and stops constitutes
a so-called coded mask, this surface is described by a two-dimensional transmission function
M(x,y). If we assume an extended radiation source S(x,y), the intensity distribution D(z,y)
on the detector can be written as a convolution:

D(z,y) = M(z,y) * S(z,y) + N (7.51)

with N representing the detector noise.

The working principle of the coded mask camera is displayed in figure 7.18. To reconstruct
the brightness distribution of the extended celestial radiation source, the image D(z, y) needs
to be deconvolved with the transmission function M(z, y) of the mask. The simplest operation
to perform this deconvolution is a two-dimensional cross-correlation of the mask transmission
function with the detector image. Formally, an estimate of the source distribution, ¥(z,y),
can be obtained by applying a decoding function A(z,y):

E(xvy) = A((I;vy) * D(xvy) = A(xvy) * M(xvy) * S((I;vy) + A((I;vy) * N (7'52)

If the image detector were to be noise free, there should exist a one-to-one correspondence
between S and X, hence we require A x M = § (Kronecker delta). Secondly, the noise
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Figure 7.17: Confocal nesting of Wolter-I telescopes to enlarge the aperture effective area.
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Figure 7.18: Elements of a coded mask telescope. Credit Bleeker (2003).

distribution should preferably be uniform over the deconvolved image. Mask patterns M(z, y)
that satisfy these two requirements are designated optimal.

Note: It is important to realize that the noise level and distribution in the detector image
depends on the brightness distribution of the sky within the field of view of the coded mask
telescope. Each source in the sky field observed does not only contribute to its specific location
(i.e. pizel) in the detector image but also to all the other image pizels. This means that all the
radiation sources in the observed sky field contribute to the noise level of the detector image.
The angular resolution of a coded mask telescope is directly related to the size me of an
individual mask element and the distance [ between the mask plane and the detector plane:

00,es = arctan(me/l) (7.53)

This resolution implies a proper sampling by the image detector of the mask element m., the
Nyquist criterion is amply satisfied for a spatial resolution of the detector d, ~ m./3. Usually

135



b
o T 4L

wy)

Figure 7.19: Left: A BeppoSAX WFC coded mask picture of a sky region near the Galactic
Centre in terms of a raw photon intensity map. The dark bars and stripes reflect the detec-
tor window support structure. Right: the deconvolved detector image showing the wealth of
compact X-ray sources in the Galactic Bulge area. Credit Bleeker (2003).

the size of the mask pattern covers the same area as the image detector and the sensitivity
is not uniform across the whole field of view, being dependent on the coded fraction of the
detector that is illuminated by the mask pattern. Hence, the characterisation of the field of
view of a coded mask telescope can be done along three coding limits: the fully coded limit,
the semi-coded limit and the zero-coded limit. If the mask has the same size as the image
detector and does not comprise repetition of a (smaller size) basic coding pattern, the field
that is fully coded equals zero. The field of view at half the sensitivity will be equal to the solid
angle subtended by the mask as seen from the image detector. Several coded mask telescopes
have been developed and built for hard X-ray and low-energy gamma-ray detection, e.g. the
Dutch-Soviet coded mask X-ray camera on the Soviet MIR Space Station, the French coded
mask telescope SIGMA onboard the Soviet GRANAT spacecraft, the Dutch-Italian Wide Field
coded mask Cameras on the BeppoSAX satellite and the low-energy Gamma-ray Imager on
the European INTEGRAL Space Observatory. The Wide-Field coded mask Cameras (WFC)
onboard BeppoSAX have been particularly successful during the six year mission life time
of the satellite and have made a crucial contribution to unveiling the origin of gamma-ray
burst sources. The two, anti-parallel, WFCs in BeppoSAX had a 40x40 degrees? field of
view (FWZR) and an angular resolution 66,.; = 5 arcminutes with location accuracy (i.e.
position resolution, see Chapter 5) of 0.7 arcminutes. The coded mask comprised a matrix
of 256 x 256 elements with m, =1 mm. The open fraction of the mask was chosen from
numerous sky simulations to be 0.33 for optimum signal to noise ratio. The resolution of the
position sensitive X-ray image detector was ~ 0.4 mm, i.e. commensurate with the Nyquist
requirement on proper sampling.

Figure 7.19 shows raw image data (left panel) from a sky region close to the Galactic Centre in
terms of a photon intensity map. It is evident from this raw image that the sky field observed
contains two bright point sources, which are directly visible as two light rectangles in the image
arising from mechanical collimation by the tube connecting the mask with the image detector.
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No other sources can yet be discerned. The right-hand panel shows the deconvolved detector
image, displaying a host of point sources in a wide brightness range. All these sources can
be simultaneously monitored regarding their time variability (e.g. transients, bursts, flashes,
periodicities) and their spectral morphology and variability.

7.3.3 Gamma-ray imaging
Compton imaging

In the energy range from several hundred keV to several MeV, the interaction of y-ray pho-
tons with matter is dominated by Compton scattering. The cross-section for this process is
governed by the Klein-Nishina equation given in Chapter 2, equation (2.20). The atomic
cross section for a target material with atomic number Z simply follows from multiplication
of the KN-cross section with the atomic charge Z, where the atomic electrons are considered
to be essentially free. The Compton process is therefore proportional to Z, see also Chapter 4,
expression (4.17). The energy of the photon can only be measured after a cascade process of
consecutive scattering interactions until the down-scattered, i.e. in energy degraded, photon is
eventually absorbed by photoelectric absorption. This requires a thick absorber, that suffers
from a great deal of noise due to the interaction of cosmic particle radiation with the detector
material. This noise can be effectively eliminated by splitting the absorber in two separate
parts, located at a certain distance [ from each other. In this way directional sensitivity can
be introduced by employing the kinematics of the Compton effect. The upper part of this so-
called Compton telescope then comprises a position sensitive sensor array of a suitable low-Z
material with a thickness maximised for a single Compton scattering to occur. In contrast, the
lower detector in the telescope entails a position sensitive array of high-Z material of sufficient
thickness to ensure total absorption of the scattered photon energy. The sky location of the
incident photon can now be traced back to a circular sky contour by measuring the scattering
angle and the direction of the scattered photon leaving the upper telescope sensor. This is
schematically shown in figure 7.20. By measuring many source photons, the intersecting sky
contours will indicate the most probable sky position of the gamma-ray source.

The scattering angle 6. between the incident photon and the scattered photon, leaving the
upper telescope element, follows from the kinematics of the Compton effect:

1 1
— —> with e, = ¢,/ + E, (7.54)
' &

cosfse = 1 — mc? (

in which e, represents the energy of the incoming photon, €,/ the energy of the first scat-
tered photon and E, the energy of the scattered Compton electron. The direction of the first
Compton scattered photon, the line element AB in figure 7.20, can be reconstructed from
measuring the interaction positions in the upper and lower telescope elements respectively.

Figure 7.21 depicts such a telescope configuration for the case of the Comptel instrument,
launched in 1991 aboard the Compton Gamma-Ray Observatory (Compton GRO) by NASA.
The energy and position of the scattered Compton electron is measured in the upper de-
tector, comprising a liquid scintillator array in which each element is viewed by a number
of photomultipliers to obtain position resolution within a single array module. The energy
and position of the first scattered photon is measured in the lower detector, constituting
an array of optically thick Nal(T1) scintillator crystals for total absorption of the scattered
gamma-ray photon, again a cluster of photomultipliers is used to determine the position of
the absorbed scattered photon inside a single Nal-module. By requiring simultaneous triggers
from the upper and lower detector arrays within a small time window commensurate with the
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Figure 7.20: Kinematics of the Compton effect. The sky location of the incident photon can be

traced back to a circular contour by measuring the scattering angle ¢ = 6. and the orientation
of the line element AB.

COMPTEL

Light recorded.

Gamma Ray absorbed,
light pulse emitted
and recorded.

Figure 7.21: Configuration of the Compton telescope as flown on the NASA Compton Gamma-
Ray Observatory (Compton-GRO). The upper detector array (the scatterer) consists of 7 cylin-
drical modules filled with liquid scintillator (NE 213A, geometric area =~ 0.42 m?), each viewed
by several photomultiplier tubes to obtain position resolution. The lower detector (the absorber)
consists of 14 cylindrical modules of an anorganic scintillator (Nal(Tl), geometric area = .86
m?, each of them also viewed by a multitude of photomultipliers. The distance between both

detector assemblies is 1.5 meter. Credit NASA/Comptel Consortium.
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Figure 7.22: Gamma-ray map of the Orion region in the 3-7 MeV energy range as mea-
sured by Comptel. The orange-white contours indicate the locations of gamma-ray enhance-
ments, the blue contours represent the locations of the densest interstellar gas clouds. Credit

NASA/Comptel Consortium.

time-of-flight t7or & [/c of the first scattered photon from the upper to the lower detector
array, almost all background events can be eliminated. This can be understood by remem-
bering that these background events either trigger only one detector array or they produce
the wrong time sequence (practically all background events are produced in the high-mass
high-Z absorber array). This particular Compton telescope is the most sensitive instrument
in the medium-energy gamma-ray range (0.5-30 MeV) developed and operated thus far. The
angular resolution depends on the measurement accuracy of the orientation of the line ele-
ment AB and the scattering angle ;. and ranges from 1.7 to 4.4 degrees (FWHM) depending
on the gamma-ray energy. The accuracy of source position determination, i.e. the position
resolution, is 5-30 arcminutes dependent on photon energy. The field of view (FOV) of such
an instrument can be quite large, depending on [ and the typical diameter of the upper and
lower detector-arrays, the FOV of the Comptel instrument subtends ~ one steradian on the
sky, similar to that of a coded mask telescope.

Figure 7.22 shows a gamma-ray map of the Orion region, the nearest birthplace of massive
stars in our Galaxy. The orange-white contours depict the areas of enhancement of the mea-
sured gamma-ray flux in the 3-7 MeV region. Most of this flux appears to be concentrated
near specific energies and, although the energy resolution of Comptel is rather limited (5-8
percent FWHM), this is strongly suggestive for the presence of gamma-ray line radiation at
4.4 and 6.1 MeV respectivily. The blue contours display the areas of high-density interstellar
clouds. The spatial coincidence of the detected gamma-ray enhancements with these dense
clouds points to interaction between energetic cosmic-ray nuclei and the gas nuclei constitut-
ing the dense interstellar clouds. The lines could then originate from the radioactive decay of
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Figure 7.23: Principle of a pair conversion telescope. Thin metal converter plates are inter-

leaved with tracking layers, comprising gas layers or thin 2D-position-sensitive semiconductor
detector planes. Credit NASA/EGRET website.

energetic cosmic-ray nuclei of carbon and oxygen.

Imaging through pair formation

At gamma-ray energies > 20 MeV the main interaction process with matter is pair forma-
tion, causing the disappearance of the gamma-ray photon (destructive interaction) which is
converted into an electron-positron pair, both having positive kinetic energy. The interaction
can only occur in the presence of a strong electric field, as encountered in the vicinity of an
atomic nucleus or near an orbital electron. The nucleus takes care of conserving the momen-
tum balance (recoil-nucleus), but gains negligible energy. Consequently, the energy of the
incident gamma-ray photon is practically entirely converted to electron/positron mass and
kinetic energy, see Chapter 4, expression (4.18). In the centre-of-mass system, the positron
and the electron are emitted in opposite directions, however in the laboratory-frame they are
emitted in the direction of the initiating photon, and the tracks of the electron and positron
reveal the direction of the incident gamma-ray photon. Directionality can thus be obtained by
measuring (”visualising”) the 3D-orientations of the electron and positron trajectories that
originate at the location of the recoil-nucleus. From these orientations the sky position of the
incident gamma-ray photon can be reconstructed.

The angular distribution N(¢)d¢ of the electron(positron) relative to the direction of the
incident photon is, in good approximation, given by:

¢odo mc?

e with by = G5 (7.55)

N(g)dp o
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Figure 7.24: Schematic of the EGRET pair telescope aboard the Compton Gamma Ray Ob-
servatory. The principal telescope elements are indicated, for explanation see text. Credit

NASA/EGRET website.

where E, represents the total energy of the pair-electron(positron). The most probable angle
¢p for electron(positron) emission follows from differentiation of expression (7.55), this results
in ¢ = ¢1/V/3.

The angle of bipartition is given in close approximation by:

m02

by ~ pr = B (7.56)
and is thus inversely proportional to the total energy of the pair-electron(positron). The angle
1) between the partners of a pair is geometrically fixed for a given combination of ¢_, ¢4 and
the dihedral angle ® between the photon-electron and the photon-positron planes. To a first
approximation, if ® = 7 (radian), and the positron and electron are emitted symmetrically
with respect to the initiating photon, we may put ¢, = ¢ = ¢, consequently ¢ = 2¢.
Hence, the opening angle of the pair also diminishes inversely proportional to the energy of
the initiating gamma-ray photon.

The characteristic interaction length for pair formation is given by the radiation length (ex-
pressed in mass per unit area), which was introduced in Chapter 4, formula (4.21). This
interaction length is proportional to [Z(Z + 1)]_1, i.e. ~ Z? for the higher Z-elements, fur-
thermore it depends on the material properties under consideration but is independent of the
energy of the incident photon.
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Figure 7.25: The third EGRET all sky map of gamma-ray point sources above 100 MeV. The
magority of these sources remains as yet unidentified. Credit NASA/EGRET Consortium.

A pair forming telescope can now be constructed by stacking several thin high-Z-metal con-
verter plates at an appropriate mutual distance, each with a thickness of a fraction of a
radiation length. The full stack is built up to a total thickness of a few radiation lengths,
suitable high-Z converters comprise lead or tungsten plates. The gaps between the plates in
the stack, the so-called tracking layers, are either filled with gas or do contain thin, position
sensitive, semiconductor strip detectors, this is schematically shown in figure 7.23. Once the
pair has formed, the electron/positron either ionizes the gas filling along their tracks or pro-
duce an electric charge in the semiconductor strips at the particular spots of their passage.
In the case of a gas filled chamber, the registered presence of a particle-pair triggers a high
voltage pulse that discharges along the particle tracks between the plates, delineating the ori-
entation of their trajectories. Such a detector is called a spark chamber, the principle of which
was already developed during the late 1950’s and the 1960’s for diagnostics in high-energy
physics at particle accelerators and in cosmic ray physics. This technique was also used in the
first space-borne gamma-ray telescopes on SAS-2 (NASA) and COS-B (ESA), that resulted
in the first (partial) maps of the high-energy gamma-ray sky. Although more sophisticated
read-out techniques, employing thin-wire grids for detection of the charges produced along the
ionisation tracks, were utilized in the second generation EGRET gamma-ray telecope on the
Compton Gamma-Ray-Observatory, the basic detection principle remained unaltered. Figure
7.24 shows the main constitutive elements of this pair telescope, that was designed to cover
the energy range from 20 MeV to 30 GeV.
The instrument uses a multiple-layer spark chamber with thin metal pair-conversion plates.
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Figure 7.26: GLAST: concept of the tracker modules. Credit NASA/GLAST Consortium.

The total energy of the gamma-ray photon is measured by a Nal(Tl) scintillation counter
beneath the spark chambers to provide good energy resolution over a wide dynamic range in
energy. The absorption proces involves a cascade of non-thermal Bremsstrahlung losses by
the pair-particles and renewed pair formation by the Bremsstrahlung photons, followed by
Compton scattering and finally photo-electric absorption until all the initial photon energy
has been depleted. The instrument is covered by a plastic scintillator anticoincidence dome
to discriminate against charged particle radiation incident on the telescope. Moreover, to
further separate background events from true celestial gamma-rays, a time-of-flight system is
incorporated similar to the one incorporated in the Compton telescope, to ensure that the
radiation is arriving in the proper time sequence.

The EGRET telescope instantaneously covers a wide field of view of ~ 0.6 steradians, the
position resolution is dependent on photon energy and source strength. For a strong, hard
spectrum, gamma-ray source this position resolution amounts to ~ 5-10 arcminutes. As out-
lined above, at lower photon energies the pair-angle is large, however the kinetic energy of the
pair particles is relatively low and they suffer from scattering in the metal converter plates of
the spark chamber. This introduces stochastic fluctuations in the particle-track determina-
tion due to the straggling behaviour of the electron/positron pairs. At high photon energies,
the statistical fluctuations due to straggling are less severe, since the pair particles possess
a much higher kinetic energy. However, as we have seen, the separation angle ¢ diminishes
with 1/E,, which makes accurate determination of the bipartition angle less straightforward.
Figure 7.25 shows the third catalogue of EGRET detected gamma-ray point sources above
100 MeV, the large majority of these sources has not yet been identified. This is either due
to the limited positional resolution of the EGRET instrument or to an intrinsic lack of coun-
terparts at other wavelengths.

The next generation gamma-ray telescope GLAST (Gamma-ray Large Area Space Tele-
scope), to be launced by NASA in 2006, exploits a new technology in track detection: the
gas-filling of the chamber has been replaced by solid state detectors as the tracking material.
This allows for improved energy and spatial resolution. An energy resolution as good as 5
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percent(FWHM) is aimed for and a position resolution as good as a few arcminutes for a
single gamma-ray photon and of the order of < 30 arcseconds for a strong gamma-ray source.
In addition, a major advantage is the fact that a replenishable supply of chamber gas is no
longer needed, which will make a much longer mission life time potentially feasible.

The baseline design for the GLAST pair forming telescope involves a modular tracker array
comprising four-by-four tower modules (total of 16), of which each module consists of inter-
leaved planes of thin lead converter sheets and silicon-strip solid state detectors. The silicon
strips are arranged in a stack of 19 pairs-of-planes, one plane of each pair for read-out in the
x-direction, the other plane of the pair for read-out in the perpendicular y-direction. When
the electron/positron interacts with such a plane-pair, an accurate position can be determined
in two dimensions. The third dimension of the track is derived by analysing the signals from
consecutive adjacent planes as the particle travels downward through the stack towards the
energy calorimeter. A multi-fold (at least three) coincidence between adjacent plane-pairs
triggers the read-out sequence of the particle tracks. Figure 7.26 shows the concept of the
tower modules and the stack of tracking detectors. The energy bandwidth of GLAST ranges
from ~ 15 MeV to > 100 GeV, with a field of view in excess of 2 steradians. The sensitivity
of GLAST for point source detection will be ~ 50 times that of EGRET at 100 MeV, with
an enhanced positional resolving power of 0.5-5 arcminutes.
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Chapter 8

Radiation Fields

8.1 Stochastic processes: distribution functions, mean and
variance

A stochastic process is defined as an infinite series of stochastic variables, one for each value of
the time ¢. For a specific value of ¢, the stochastic variable X (t) possesses a certain probability
density distribution. The numerical value of the stochastic variable X () at time ¢ corresponds
to a particular draw (outcome) from this probability distribution at time ¢. The time series
of draws represents a single time function and is commonly referred to as a realisation of the
stochastic process. The full set of all realisations is called the ensemble of time functions (see
Fig.8.1).

At each time ¢, the stochastic variable X (¢) describing the stochastic process, is distributed

M x](t)
\/sz(:)
Pensemble
\_/\’\’\/\’\}\'”\/\/—’\/\/'M}%(t)
W xA(t)

\.\/——/_/\/_/-/ij(t)

Figure 8.1: The ensemble of time functions of a stochastic process.
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by a momentary cumulative distribution, called the first-order distribution:
F(z;t) = P{X(t) <z} (8.1)

which gives the probability that the outcome at time ¢ will not exceed the numerical value x.

The probability density function, or first-order density, of X (¢) follows from the derivative of

F(z;t):

oty = 205D
x

This probability function may be a binomial, Poisson or normal (Gaussian) distribution.

For the determination of the statistical properties of a stochastic process it suffices in many
applications to consider only certain averages, in particular the expected values of X (¢) and
of X2(t).

The mean or average u(t) of X (t) is the expected value of X (¢) and is defined as

(8.2)

+o00

plt) =B{X(0) = [ @ flwit) do (8.3)

— 00

The variance of X (t) is the expected value of the square of the difference of X (¢) and pu(¢)
and is, by definition, equal to the square of the standard deviation:

o?(t) = B{(X () — p(1))*} = B{X*(t)} — n*(2) (8.4)

(in case of real functions X (¢) and u(t)).

8.2 Autocorrelation and autocovariance

This distribution can be generalized to higher-order distributions, for example the second
order distribution of the process X (t) is the joint distribution

G(xl,wg;tl,tg) :P{X(tl) S :El,X(tQ) S:EQ} (8.5)
The corresponding second derivative follows from

82G($1, €23 tla t2)
81‘1 8:1:2

g(z1,z2;t1,t2) (8.6)

The autocorrelation R(t1,t2) of X (t) is the expected value of the product X (1) - X (¢2) or
X(t1) - X*(t2) if we deal with complex quantities:

+00 +00
R(t1, 1) = B{X(f1) - X*(t2)} = / /3:1 25 gl a5, b) drdas (8.7)

—00 —00

with the asterisk (*) indicating the complex conjugate in case of complex variables (see
Fig.8.2).
The value of R(t1,t2) on the diagonal ¢t = t, = t represents the average power of the
signal at time ¢:
R() = R(t,1) = B{X*(1)} = B{| X()) "} (8.8)
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Figure 8.2: The autocorrelation of a stochastic process.

Since the average of X(t) is in general not zero, another quantity is introduced, the autoco-
variance C(tq,t2), which is centered around the averages u(t1) and u(t2):

C(t1,t2) = B{(X(t1) — pu(t1)) - (X (t2) — pu(t2))"} (8.9)
For t; =ty =t (verify yourself)
C(t) = C(t,t) = R(t, t)— |u(t) [’= o*(t) (8.10)
C(t) represents the average power contained in the fluctuations of the signal around its mean
value at time ¢.
8.3 Wide-sense stationary and ergodic signals

Next, consider a signal for which the average does not depend on time, and for which the
autocorrelation only depends on the time difference 7 = to — t1. This is called a wide-sense
stationary (wss) signal. The following relations hold:

signal average u(t) = p = constant (8.11)
autocorrelation  R(t1,t2) = R(7) (8.12)
autocovariance  C(t,t;) = C(7) = R(1) — p* (8.13)
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For 7 = 0:
R(0) = p? + C(0) = p? + o? (8.14)

which expresses that the total power in the signal equals the power in the average signal plus
the power in its fluctuations around the average value. Note that both the autocorrelation
and the autocovariance are even functions, i.e. R(—7) = R(7) and C(—7) = C(7).

Finally, a wss-stochastic process X (¢) is considered ergodic when the momentaneous av-
erage over X (t) can be interchanged with its time average, i.e. when

+5T
b= :FILH;O% /X(t) dt = B{X ()} (8.15)
,%T
+5T
and  R(r) = :FILH;O% X*(t) X(t47) dt = B{X*(t)- X(t+ 7)) (8.16)
—%T

8.4 Power spectral density

The autocorrelation function R(7) defined in equations 11.52 and 8.16, has a Fourier transform
—+0o0
Sals) = / R(r) - e 27 dr (8.17)
— o0

Since R(7) has the dimension of a signal power (e.g. Watt), the dimension of Sy(s) is [power x
time], which corresponds to power per unit frequency, e.g. Watt-Hz 1. The quantity Sy(s) is
called the power spectral density (PSD), which represents the double-sided (meaning: frequen-
cy —oo — +00) power density of a stochastic variable X (¢). The Fourier pair R(7) < S4(s)
is commonly referred to as the Wiener-Khinchin relation. For 7 = 0 this relation becomes:

+00
RO) =B{|X (1)} = / Su(s) ds (8.18)
and if the signal average p = 0:
+00
R(0) = C(0) = 02 = / Su(s) ds (8.19)

i.e. the power contained in the fluctuations of a signal centered around zero mean follows from
the integration of the spectral power density over the entire frequency band.

Since physical frequencies run from zero (i.e. DC) to +oo, the one-sided power spectral
density S,(s) = 2S54(s) is commonly used. The total signal power follows from integration of
this entity over the physical frequency domain (see also figure 8.3):

R(0) = / S, (s) ds (8.20)
0

Figure 8.4 shows two examples of S,(s), displaying the PSDs which relate to the characteristic
light curves of certain compact X-ray binary systems, the so-called Low Mass X-Ray Binaries
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Figure 8.3: Power spectra: the area under the square of the function h(t) (panel a) equals the
area under its one-sided power spectrum at positive frequencies (panel b) and also equals the
area under its double-sided spectrum (panel c). Note the factor 2 in amplitude between the
one-sided and double-sided spectrum. Credit Press et al. (1992).

(LMXBs). The binary source GX5-1 shows a “red-noise” excess, i.e. the power increases at
low frequencies, roughly following a power law dependence proportional to s #, on which a
broad peak around a central frequency s is superimposed. This peak refers to so-called quasi-
periodic oscillations (QPOs), indicating that the X-ray source produces temporarily coherent
oscillations in luminosity. The other source Sco X-1, shows a similar behaviour, the red-noise
referring to stochastic (i.e. non-coherent) variability in X-ray luminosity is largely absent in
this case.

Note: relation 8.16 defines the autocorrelation function of a stochastic process as a time
average. If the stochastic variable X (¢) is replaced by a general function f(u), the autocorre-
lation is defined as (provided that [*_ | f(u)| du is finite):

/f flu+z) du—/f flu—z)du (8.21)
where no averaging takes place. The Fourier transform ®(s) of R(z) is now given by

- / R(z) - e~ do = F(s) - F*(s) =| F(s) (8.22)
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Figure 8.4: One-sided power spectra of the X-ray sources GX 5-1 and Sco X-1. Credit van
der Klis (1989).

in which f(u) < F(s). This is the Wiener-Khinchin theorem for a finite function f(u), which
is only non-zero over a limited interval of the coordinate w.
For z = 0 this results in:

+00 +0o0 +0o0
R(0) = / £ (u)]? du:/CD(s) ds = / |F(s) 2 ds (8.23)

The relation:
+o0o +00
[ 1f@ du= [ |FGs) ds (8.24)
—00 —00

is referred to as Parseval’s theorem, each integral represents the amount of “energy” in a
system, one integral being taken over all values of a coordinate (e.g. angular coordinate,
wavelength, time), the other over all spectral components in the Fourier domain, see also figure
8.3. The function ®(s), therefore, has the dimension of a energy density, quite confusingly
(and erroneously) in the literature this is also often referred to as a power density, although
no averaging process has taken place.

8.5 Intrinsic stochastic nature of a radiation beam: Applica-
tion of Bose-Einstein statistics

Irrespective of the type of information carrier, e.g. electromagnetic or particle radiation, the
incoming radiation beam in astronomical measurements is subject to fluctuations which derive
from the incoherent nature of the emission process in the information (=radiation) source.
For a particle beam this is immediately obvious from the corpuscular character of the ra-
diation, however for electromagnetic radiation the magnitude of the fluctuations depends on
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whether the wave character or the quantum character (i.e. photons) dominates. By employing
Bose-Einstein statistics, the magnitude of these intrinsic fluctuations can be computed for the
specific case of a blackbody radiation source which is incoherent or “chaotic” with respect to
time. Photons are bosons, which are not subject to the Pauli exclusion principle, consequently
many bosons may occupy the same quantum state.

Intermezzo: Bose-Einstein and Fermi Dirac statistics

The world is quantum-mechanical. One way of describing this, is to note that particles in
a unit volume of space ('a cubic centimeter’) are distributed in momentum-space in boxes
with a size proportional to h?, where h is Planck’s constant. At each energy, there is a finite
number Z of boxes (where Z o< 4mp2dp with p the particle momentum). Consider n; particles,
each with energy ¢;, and call the number of boxes available at that energy Z;. Bosons can
share a box. The number of ways W (n;) in which the n; bosons can be distributed over the
Z; boxes is given by

(ni+ Z; — 1)!

W(ns) = n!(Z; — 1)!

(8.25)
(To understand this: the problem is equivalent to laying n; particles and Z; — 1 boundaries
in a row. The number of permutations is (n; + Z; — 1)!; then note that the particles and
boundaries can be interchanged.) Similarly, we put n; bosons in Z; boxes, etc. The number
of ways in which N = }7°, n; bosons can be distributed over the boxes in momentum space
thus is: W =11, W (n;). The basic assumption of statistical physics is that the probability of
a distribution is proportional to the number of ways in which this distribution can be obtained,
i.e. to W. The physics behind this assumption is that collisions between the particles will
continuously re-distribute the particles over the boxes. The most likely particle distribution
is thus the one which can be reached in most different ways. We find this maximum in W by
determining the maximum of In W, by setting its derivative to zero:

OInW(n;)

InW = Zan (n;)) = AlnW = Z o
)

=1 i=1

An; =0 (8.26)

We consider one term from the sum on the right-hand side. With Stirlings approximation
Inz! ~ xlnz — x for large x we get

mW(n;) = (ni+Zi—)ln(n;+2Z;—1)—(n;+2Z; —1) —n;lan; +n; — (Z; — 1) In(Z; — 1)
+(Zi — 1) = (nl + Z; — 1) ln(ni + Z; — 1) —mn;lnn; — (Zi — 1) ln(ZZ- — 1) (827)

For a nearby number n; + An;, we have

OInW(n;)
6ni
= An;[ln(n, + Z; — 1) — Inn,] (8.28)

AlmW(n;) = InW(n;+ An;) —InW(n;) ~ An;

to first order in An;.
For equilibrium, i.e. the most likely particle distribution, we now have to set:

AW = > Aniln(n;+ Z; —1) —Inn] = 0 (8.29)
=1
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Since we consider a system in thermodynamic equilibrium, i.e. for which the number of
particles N = > n; per unit volume and the energy F = Y n;¢; per unit volume are constant,
the variations in n; must be such as to conserve N and F i.e.

AN =Y An; =0 (8.30)
i=1
and -
AE =Y €An; =0 (8.31)
=1

These restrictions imply that we also have:

o
AW —aAN — BAE = > An;[In(n; + Z; — 1) —Inn; —a — Be;] = 0 (8.32)
=1

The sum in 8.32 is zero for arbitrary variations An;, provided that for each ¢

_ _ m; 1
In(m; +2Z;—1) —Inm; —a— fe; =0= Z 1 otha 1 (8.33)

which is the Bose Einstein distribution.

Since Z; > 1, m;/(Z; — 1) can be replaced by m;/Z;, which represents the average occupation
at energy level ¢; (occupation number). The values of @ and 8 depend on the total number
of particles and the total energy, and can be determined from these by substituting n; in
N =% ,n;and in E = Y72, ns¢;. For the Planck function, the number of photons need not
be conserved: e.g. an atom can absorb a photon and jump from orbit 1 to orbit 3, and then
emit 2 photons by returning via orbit 2. Thus, the Lagrange condition 8.30 does not apply
to photons, and we obtain the Planck function by dropping « in 8.33:

;g 1
Zi—1 ePei—1

=Ty, (8.34)

n,, is the average occupation number of photons at frequency 1. Note that photons do not
collide directly with one another, but reach equilibrium only via interaction with atoms. We
can make the connection to thermodynamics by taking

S=kInW = AS = kAln W (8.35)

With Eqgs. 8.32 we get
AS = kaAN + kBAE (8.36)

and with TAS = —CAN + AFE we find that g = 1/(kT); here ( = —«/f is the thermody-
namical potential per particle.

Fluctuations around equilibrium

To investigate the fluctuations we look at the number of ways in which n; + An; particles can
be distributed, as compared to that for n; particles:

JIln W (n;) n An? 02 In W (n;)
on; 2 on?

)

InW(n; + An;) = InW(n;) + An; (8.37)
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where we now include the 2nd order term.
In equilibrium the term in 8.37 proportional to An; is zero. Consequently, we can rewrite
8.37 as

a W”(ni)
2

B 0? In W (n;)

2
on;

W (ni + Ang) = W (ny)e An? o where  W(n;) = (8.38)
In other words, the probability of a deviation An; drops exponentially with the square of An;,
i.e. the probability of An; is given by a Gaussian! The average value for An? is found by
integrating over all values of An;:
w' (n;)
— 2 An?W(n;)e ~ 2 An? g An; 1
Ani = W (ny) = I (839)
00 Vo~ An? . W (n;)
S Wing)e™ = idAn;

(Note that W(n;) and W"(n;) do not depend on An;, so that they can be considered as
constants in the integrations. Note also that the maximum negative deviation has An; = —n;,
and the maximum positive deviation An; = N — n;; the integrals should therefore formally
be evaluated between these values; however, for large An; the integrand drops rapidly to
zero, and so we can extend the integrals to the full range —oo to +oo)without compromising
the result. Computing the second derivative of InTW (n;) and changing sign we find for the
variance:

~3 oo _1_ﬁi(ﬁi+zi—1)__. 1
Ani = [W (nz)] = T =n; |1+ m (840)
For the Planck function we must drop the a. Thus, for photons:

The fluctuation in the average occupation number An,,kZ follows from

An?
An,, %= = T (L4 7, (8.42)
(3

We can repeat the same exercise for fermions. In this case the particles are not allowed to

share a box, and the number of ways W (n;) in which n; particles can be distributed over Z;
boxes with energies ¢; is given by

Z;!
Win) = — 2% 8.43
() ni!(Z; — n;)! (843)
The difference in In W (n;) between nearby numbers is
InW(n; + An;) — InW(n;) = —An; [lnn; — In(Z; — n;)] (8.44)
to first order in An;. This leads to the equilibrium, Fermi Dirac distribution:
n; 1 L
7 etBagq (845)
and to an average value of the square of a deviation
~3_ milZi-m) 1 o
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The fluctuation in the average occupation number An;? follows from

N'N)‘

A
Any? = Z” = 7ip(1 — T (8.47)

i
End Intermezzo Bose Einstein and Fermi Dirac statistics

The volume density of photons in a blackbody Bose gas with frequencies between v, and
vk + dyy, follows from N (v)dvg = g(vg)ny, dvg, in which g(vg) represents the volume density
of quantum states per unit frequency at 4. Since the stochastic variables n,, are indepen-
dent, the Bose-fluctuations AN2(1,) in photon density per unit frequency can be written as
(omitting the suffix k):

_ 1
ANZ(v) = N(v) <1 + e T = 1) (8.48)

where N (v) follows from the specific energy density p(v) = p(v)®%"#rium given by (see OAF1,
Chapter 2):

8mh v3
2(v)dy = d 8.49
Py = 2 (5.49)

through the relation N(v) = p(v)/hv. If a detection element, e.g. an antenna, is placed within
a blackbody radiation field, for example inside a vacuum enclosure at temperature T', the
incident photon flux is given by 7 (v) = %ﬁN (v)AeS2. The factor  refers to one component
of polarisation, A. is the effective area of the detection element and ) constitutes the solid
angle subtended by the detector beam viewing the radiation field. If radiation illuminates
an extended surface (A.) with various directions of the wave vector, i.e. an omnidirectional
blackbody radiation field, coherence theory states that spatial coherence is limited to A, ~
A% the so-called extent (etendue) of coherence.' Substituting N (v), the expression for the

specific photon flux A(v) (in photons s~ Hz ') becomes:

_ 1
) = exp(hv/kT) — 1 (8:50)
An2(v) = n, (1 + exp(hy/lkT) — 1) (8.51)

In the extreme case that hv > kT, the second term becomes much smaller than 1, hence:
An?(v) = n(v) (8.52)

This is the well-known expression for Poissonian noise in a sample containing 7n(r) photons.
This condition is called the quantum limit of the fluctuations and it represents the mini-
mum value of intrinsic noise present in any radiation beam. Obviously, this always holds for
corpuscular radiation (cosmic-rays) and neutrinos, since the wave character is not an issue.

!This relation is the same as that governing the size # = \/D of a diffraction limited beam (Q = #?) for an
aperture with diameter D: A, ~ D2,
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Figure 8.5: Frequency as a function of temperature: division between thermal and quantum
noise. Credit Lena et al. (1988).

For a photon energy hv < kT', the noise is normally expressed in terms of the aver-
age radiation power P(v) (e.g. in Watt Hz~!) by writing P(v) = (hv)n(v) and AP2(v) =
(hv)?An?(v):

hv
exp(hv/kT) — 1

AP2(v) = P(v) <hl/ + > = P(v)(hv + P(v)) (8.53)

Taking the limit hv < KT

AP2(v) = P%*(v) (8.54)
and P(v) = kT (8.55)

which is the expression for the classical thermal noise power per unit frequency bandwidth.
This limit is called the thermal limit.

The transition between noise in the quantum limit to the thermal limit occurs at hv ~ kT
At room temperature, T ~ 300 K, this corresponds to a frequency v ~ 6 THz, or a wavelength
A =~ 50 pm. The relation v = kT /h as a function of temperature T' is displayed in figure
8.5. It is clear from this diagram that radio observations are always dominated by the wave
character of the incoming beam and are therefore performed in the thermal limit. As a result,
the treatment of noise in radio observations differs drastically from that of measurements at
shorter wavelengths. Specifically at submillimetric and infrared wavelengths quantum limited
observation is vigorously pursued but this remains still difficult.

The fluctuations in average power P(v), given in equation 8.54, for the thermal limit can
be interpreted in such a way that whenever wave packet interference becomes important, the
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interference will cause the fluctuations to become of the same magnitude as the signal. The
low frequency fluctuations can be thought of as caused by the random phase differences and
beats of the wavefields, as described in the following paragraph.

Note of Caution: The above expression for the fluctuations in a blackbody photon gas
applies only to the interior of a blackbody in which the receiving element is submerged, i.e.
a blackbody cavity or a thermal bath, where the condition \? = c¢?/v? = A is satisfied. If
this condition is not fulfilled, then even in the limit hv < kT quantum noise may dominate.
For example, if a star, whose spectrum resembles a blackbody at temperature T, is observed at
frequency v, such that hv < kT, thermal noise ought to dominate. The star may however be
so distant that the radiation is effectively unidirectional and hence, A.Q < \2. The photons
will consequently arrive well separated in time and quantum noise evidently dominates.

8.6 Stochastic description of a radiation field in the wave limit

8.6.1 Wave packets, random superposition

In astrophysics, many sources of electromagnetic (EM) radiation have a thermal origin. A
beam of thermal radiation will ordinarily comprise a myriad of randomly overlapping wave
groups or wave packets. Examples of such wave packets are shown in figure (8.6). They arise
from two different types of quasi-monochromatic sources:

- Gaussian shaped spectral lines which emerge when several line broadening mechanisms con-
tribute to the line formation (wviz. the central limit theorem).

- Spectral lines with a Lorentz profile, characteristic for the natural line broadening associated
with the intrinsic time spread of the radiative atomic transitions involved that are governed
by the uncertainty relation of Heisenberg .oy = h/2.

The characteristic length, 7., of these wave packets in the time domain follows from the Fourier
transform of the spectral frequency distribution. A Gaussian spectral line, centered at frequen-
cy vp with a full-width half-maximum (FWHM) Av, corresponds to a Gaussian shaped wave
packet with a characteristic width 7, ~ (1.5Av) 1. A Lorentzian profile (vy, FWHM Av) de-
rives from an exponentially damped harmonic oscillator with a 1/e-value 7. = (mrAv)~!. The
characteristic time 7. is commonly referred to as the coherence time, it represents the typical
time scale over which the phase of the EM-wave can be predicted with reasonable accuracy
at a given location in space. For atomic transitions in the optical 7. ~ 107%. Figure (8.7)
shows a linearly polarised quasi-monochromatic signal comprising a random superposition of
individual wavepackets.

This wave signal fluctuates both in amplitude and in frequency, the latter characterised by
a typical bandwidth Arv around an average frequency r. The frequency stability of such a
quasi-monochromatic wave is defined by 7/Av.

The linearly polarised signal displayed in figure (8.7) can mathematically be expressed by
the real function:
E(t) = Ey(t) cos(2mvt + ¢(t)) (8.56)

The amplitude Fy(t) of the quasi-monochromatic wave is a wide-sense stationary Gaussian
random time function of zero mean. Moreover the stochastic process is assumed to be mean-
and correlation-ergodic, i.e. for an arbitrary real stochastic variable X (t) its ezpectation value
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Figure 8.6: Ezamples of wave packets and their Fourier (<) transforms. Left: Gaussian
shaped wave packet < Gaussian spectral line. Right: Ezponentially damped harmonic oscilla-
tor < Lorentzian spectral line. Credit Hecht (1987).

at time t, E{X(t)}, can be interchanged with its time average:

+5T
X = lim = [ X(t)dt = B{X (1)} (8.57)

Furthermore, the expectation value at time t of the autocorrelation Rx(7) of X(¢) can be
interchanged with its time average:

+5T

Ry(r) = X(O) X 17) = 1;320% X(t)- X(t+7) dt = B{X(£) - X(t+7)}  (8.58)

(M

T

N

The frequency is randomly varying around an average frequency v, the instantaneous
frequency v(t) follows from the time derivative of the argument of the cosine term according

to:
1 d L4
v(t) = 5o @t + ¢(t)) = v + —QW_‘Z?)

As can be seen from equation (8.59), the time variable phase factor ¢(¢) fully accomodates
the frequency bandwidth Av of the stochastic wave signal.

(8.59)

The above mathematical description suffices for a linearly polarised signal, however in case of
a thermal radiator a particular polarisation direction is only very short-lived, i.e. only during
the coherence time 7. of an emitted wave packet. This can be understood by considering the
emission process involved.

Thermal emission consists of an extremely large number of radiative transitions, generated
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Figure 8.7: A linearly polarised quasi-monochromatic wave.

by randomly oriented atomic emitters. Each atom radiates a polarised wave train for roughly
1078 or 107° seconds in the case of optical light depending on the natural line width Av
of the transition. In the case of molecular vibrational or rotational transitions (radio and
far infrared) the timescales are substantially longer. Considering a certain wave propagation
direction E, individual atomic (molecular) emissions along that direction will combine to gen-
erate a polarised wave, which however will not persist for more than the typical coherence time
7. of a wave packet, i.e. in the optical 1078 — 10~° seconds. New wave trains are continually
emitted and as a result the magnitude and the polarisation direction of the electric vector E (t)
changes in a completely random manner on a typical time scale equal to the coherence time
7.. If these changes occur at a rate of 108 to 10° per second, any persistent polarisation state
is undiscernable. Thermal radiation is therefore designated as natural or unpolarised light,
although the latter qualification is somewhat confusing since in actuality the light comprises
a rapid succession of different polarisation states.

8.6.2 The analytic signal

The rapid random fluctuations in the electric vector E(t) of a thermal radiation field can be
handled mathematically in a scalar approach by using a complex analytic representation of
the quasi-monochromatic wave field.
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Consider the time-varying electric field E(t) of equation (8.56). Along with E(¢) one may
consider a complex function:

E(t) = E(t) +iFm(t) (8.60)

in which: L o B

Fui(t) = - [mﬁ (8.61)
is the Hilbert transform of E(t). This integral can be interpreted as a convolution of E(t)
with (mt) L

Fyi(t) = E(t) * % (8.62)

Applying the convolution theorem and considering the Fourier transform of (7¢)™" < i sgn(v),
the Hilbert transform can be regarded as a special filter that leaves the amplitude of the spec-
tral components unimpaired, but alters their phases by 7/2, positively or negatively depending
on the sign of v. A consequence of this is, that Hilbert transforms of even functions are odd
and those of odd functions even.
The complex function E(t) of equation (8.60) is known as the analytic signal, the Hilbert
transform is referred to as the quadrature function of E(t). For example, the quadrature
function of cost is sint, the analytic signal is therefore exp(it).
Analytic functions are useful to describe quasi-monochromatic wave phenomena, where one
deals with modulated carrier signals. The analytic signal contains no negative frequency com-
ponents, it is obtainable from FE(t) by suppressing the negative frequencies and doubling the
result.

1

For example cos 2wyt contains frequency components at vy and —vyg:

eZmljot + 6727rwot

cos 2t = 5 , (8.63)

—2mivpt

the analytic signal follows from suppression of e and multiplication by 2.

Problem 1: Show with the aid of a Fourier transform that applying the above operation to
E(t) results in the analytic signal E(t)!

If E(t) is a Gaussian process, its Hilbert transform (linear) is also a Gaussian process, more-
over the autocorrelation functions are equal and the values of E(t) and its Hilbert transform
are uncorrelated at the same instant £. The analytic signal comprises a harmonic oscillation
at an average frequency 7 modulated by a slowly varying envelope:

E(t) = Ey(t) - &™) (8.64)
The complex amplitude (envelope function) Ey(t) can be expressed as:
Eo(t) = |Eo(t)] - " (8.65)

This envelope function is also referred to as the phasor of the analytic signal, |Ey(t)| repre-
sents the instantaneous amplitude of F(t) and ¢(t) the time variable phase. The time rate
of change of ¢(t), i.e. (%) %(tt), represents the instantaneous frequency shift Av(t) of the
analytic signal relative to the average carrier frequency v.

In the next section, a quantitative fluctuation analysis of a thermal wave field will now be
deployed with the aid of the expression for the analytic signal:

E(t) = |Ey(t)] - e'Pm7 o] (8.66)
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8.6.3 Fluctuation analysis of a thermal wave field
The ideal monochromatic plane wave

Let’s first consider the phasor expression for a, hypothetical, perfectly monochromatic plane
wave and its physical interpretation.

The frequency bandwidth Av then reduces to a delta function: 6(v — 7). In the time domain
this is represented as an infinitely long wave train (i.e. the Fourier transform of a é-function). If
this wave train were to be resolved in two orthogonal polarisation components perpendicular
to the direction of propagation, they in turn must have the same frequency, be infinite in
extent and are therefore mutually coherent. In other words an idealised monochromatic plane
wave s always polarised. Expressing this in terms of the phasor Eg(t) of a linearly polarised
plane wave, this results in:

Eo(t) = |Eo(t)] - ) = | Eq| - €0 (8.67)

i.e. both the amplitude | Ey| and phase ¢ of the phasor are constant in time.

Polarized thermal light

Consider a radiation field emitted by a thermal source, that is subsequently passed by a
polarization analyzer with its polarization direction along the X-axis in a plane perpendicular
to the wave propagation vector k. The time wave form in the X - ¢ plane can now be regarded
as the sum of a great many independent contributions of the x-components of the fields
generated by the individual atoms (molecules). The random fluctuations of E(t) along the
x-axis, Ex (t), can now be described by a fluctuation analysis of the phasor Exg(t), i.e. of its
magnitude | Exo(t)| and its phase ¢(¢). For time scales short compared to the coherence time
(1), Exo(t) will remain almost constant in time, in the case of optical light for 7, &~ 10~® s this
still comprises several million harmonic oscillations of the electric vector E(t) (v ~ few 10
Hz). For time scales 7 > 7, | Exo(t) | and ¢(t) will vary randomly, this is pictorially shown in
figure 8.8. The coloured phasors signify the built up of Exo(t) by a great many independent
atomic contributions that are fully uncorrelated. Mathematically these fluctuations can be
described by regarding the real and imaginary parts of Exo(t), Re(Exo(t)) and Im(Exy(t)),
as uncorrelated Gaussian stochastic variables with equal standard deviation that vary rapidly
and randomly and are mutually incoherent.
The joint (bivariate) probability density distribution is then given by:
poiv (ReBxo(t), ImExo(t)) dReExo(t) dimbxo(t) =
1 _ Re2Ex ()+Im2Ex(t)

= e 202 dReEX() (t) dImEXO (t) (8.68)

2mo?

Furthermore, the following relations hold:

|Exo(t)]? = |Ex(t)]*= Re’Exo(t) + Im*Exo(t) ) (8.69)
b(t) = arg(Bxo(t)) = arg(Bx (1)) — 2mit = arctan 2EX0()

ReBxol) (8.70)

Changing to polar coordinates the bivariate probability density distribution for | Exo(t)| and
¢(t) can be obtained:

i (1 Bxo(®)1, 4(0)) d|Bxol®) | dp(e) = Z0OL 585 1 Boey | agty 8.7

2mo?
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Figure 8.8: Black: Random orientation of the complex envelopes (phasors) of polarized thermal
light at a fized point in space at three different times to, t1 and to separated by time intervals
larger than the coherence time 71.. Colors: signifying the great many independent complex
atomic (molecular) phasors.

Integration over | Exo(t)| yields:
1
t) = —
p(9(1) = 5

i.e. all phase angles ¢(t) are equally probable, which is obviously to be expected for randomly
fluctuating phase angles.

Integration over all phase angles ¢(t) yields the amplitude distribution | Ex(t) | for the
X-component of the electric field vector of the thermal source:

(8.72)

. Exolt Exo®I?
PR (IExo(t)I) _ [Exo(®)] e T (8.73)

o2
This is a so-called Rayleigh distribution. pg (| Exo(t) |) and p (¢(t)) are displayed in figure 8.9.

Problem: 2 Show that the most probable value of |Ex(t)| equals o and the average value
for the amplitude equals o/(7/2). N
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The energy streaming through space in the form of an electromagnetic wave is shared between

the constituent electric and magnetic fields.

The energy density of an electrostatic field (e.g. between plates of a capacitor) pz = €,€9 |E 12/2

(dimension Joule/m?), with |E| the magnitude of the electric vector (dimension V/m) and
€o the vacuum permittivity (8.8543 - 107'2 Asec/Vm). Similarly, the energy density of a
magnetic field (e.g. within a toroid) equals pz = |B|*/(2rp10) (dimension Joule/m?), with

|B| the magnitude of the magnetic vector (dimension Tesla = Vsec/m?) and g the vacuum
permeability (47 - 1077 Vsec/Am).
The wave equation for a plane electromagnetic wave traveling along the x-direction in

vacuum is given by:

02E(z, 1)

B iazE(az,t)
O0x2 2 o2

92B(z, 1)
O0x2

1 9B(s,1)
2 o2

(8.74)



for the electric field wave and the magnetic field wave respectively. The magnetic field wave
travels in a plane perpendicular to the electric field, both the electric field and the magnetic
field directions are perpendicular to the direction of propagation (x). The plane wave solution
can be expressed by a harmonic function, using a complex scalar representation:

E(z,t) = Ey-e"?=2/A) and  B(z,t) = By -2 Wt=2/Y) (8.75)

Consistency with Maxwell’s equations requires that for the EM-wave holds pz = p5. Hence,
from the above, we have By = Ey/c.

The flow of electromagnetic energy through space associated with the traveling EM-wave is
represented by the Poynting vector S = (1/ ug)E x B, a vector product that symbolizes the
direction and magnitude of the energy transport per unit time across a unit area (e.g. in
units Watt m—2). The vector magnitude |S| = |E||B|(sin$)/uo equals |E||B|/po, since the
magnetic field is perpendicular to the electric field (¢ = 7/2). Representing the actual wave
signal by taking the real part of expressions (8.75) we get:

S| = EoBycos? 2n(vt — z/X) = egcE? cos? 2n(vt — z/\) = (eo/ug)%Eg cos? 2m(vt — /)
(8.76)

The average power flux density for an ideal monochromatic plane wave, I(t) equals |S(£)]:

T 12 L E§ Y
I(t) = (eo/po)2 Ejcos? 2m(vt —z/\) = (60/u0)27 = 2.6544 - 10 > (8.77)

expressed in Watt/m? for Ey in Volts/meter.

A perfectly monochromatic plane wave is represented in the time domain by an infinitely
long wave train and is by definition fully polarised. A quasi-monochromatic radiation field
from a thermal source can be described by a complex expression for the electric field E(t),
comprising a harmonic oscillation at an average frequency 7 modulated by a slowly varying
envelope, accomodated by the phasor Ey(t), i.e. E(t) = Ey(t) - €271, The average power
flux density for this wave then follows from the expectation value of the product E(t) - E*(t):

1) = B{I()} = (eo/po) B{E®)- B (1)} = 2.6544 - 10 B { | Ey()[2} (8.78)

Since we are primarily concerned with relative power flux densities generated by these travel-
ing waves within the same medium, we can disregard in what follows multiplication with the
numerical constant in expression (8.78), since this (deterministic) quantity is only of relevance
for assessing the absolute numerical value of the power flux density and bears no influence
on the description of the stochastic nature of the signals. In practical computations, this
constant should of course be applied!

The probability density distribution of the instanteneous intensity of polarized
thermal light

From the distribution derived for |Exo(t)| in a previous paragraph, the probability density
of the instantaneous intensity (or irradiance) I'x(t) for a linearly polarized (along the X-axis)
thermal radiation field can be readily derived.

We can now set the following equalities:

Lx(t) = Ex(t) - Bx(t) = |Ex(t)]” = |Exo(t)|” (8.79)
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Transformation of variables in equation ( 8.73) yields:
p(Iy) dIy = (Ix) ' e I¥/Tx g1y (8.80)

with Iy = B {|Exo(H)*} = 202,
This is an exponential probability density distribution that has the important property that
its standard deviation oy, is equal to its mean Ix (= 202).

Problem 3: Prove that the variance of this intensity probability distribution is given by:

(AIx)2 =13} (8.81)

q

This result, which is now obtained formally from the bivariate Gaussian distributed s-
tochastic process with zero-mean for the harmonic wave components, is the same as the
fluctuation in the average radiation power per unit frequency bandwidth (Watt Hz™!) for

one _component of polarization that was derived earlier for a blackbody radiation field, i.e.
(AP)2%(v) = P 2(v). This should evidently hold.

Unpolarized thermal light

Light from a thermal source can be designated as unpolarized if it fullfils two conditions. First:
if passed by a polarization analyzer in a plane perpendicular to the propagation vector 1_5, the
intensity should be independent of the rotational orientation of the analyzer. Second: two
orthogonal field components Ex (t) and Ey () should have the property that Ex () E% (t+7)| =
0 for all rotational orientations of the X-Y coordinate axes and for all delays .

As demonstrated in the previous paragraphs, Ex(¢) and Ey (t) can be handled as complex
Guassian random processes and since they are uncorrelated for all relative time delays 7 they

are statistically independent. The instanteneous intensity of the unpolarized wave field is then
defined by:

I(t) = |Ex()]® + |By(®)]
= |Exo(t)]* + |Evo(t)]”
= Ix(t) + Iy(t) (882)

~i

and

From the definition of unpolarized light I (¢) and Ix (t) have equal means Iy = Iy = 3

are independent statistical processes.
The probability density function of the total instanteneous intensity I(¢) follows from the
density function of the sum of p (Ix) and p (Iy):

p(lx) = 2(I) - e72x/1 (8.83)
p(Iy) = 2(I)~" e 2I/T (8.84)

The probability density function of this sum is the convolution of p (Ix) and p (Iy):
p(I) = p(Ix) * p(ly) (8.85)
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Figure 8.10: Probability density function of the instantaneous intensity of an unpolarized

thermal wave field. Credit Goodman (2000).

Hence:

I _ _ _
p(I) = 4(f)—2/ e MTe=20=I0/1qr" — 4(I)~21e= 2/ (8.86)
0

This density function is plotted in figure 8.10.

From this distribution it is clear that unpolarized thermal light has considerably less proba-
bility of having very small values of the instantaneous intensity than polarized thermal light.
Moreover, the ratio of standard deviation o to mean value I has reduced from unity in the
case of a polarized thermal wave to 1/1/2 for an unpolarized thermal wave field.

In practice a radiation beam is generally neither completely polarised nor completely unpo-
larised, both cases are extremes. More often the electric vector E(t) varies in a way that
is neither totally regular nor totally irregular, the radiation should be regarded as partially
polarised. An useful way to describe this behaviour is to envision it as the result of the super-
position of specific amounts of natural and polarised light. If a quantitative assessment of the
degree of polarisation is required, a measurement of all four Stokes parameters is required. In
radio astronomy this is often done due to the intrinsic sensitivity of the receiver front-end for
a particular direction of polarisation.
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8.7 Stochastic description of a radiation field in the quantum
limit
8.7.1 The unfiltered Poisson process

In the quantum limit no coherence effects occur and the radiation field fluctuations can be
described by photon statistics only. Consider an incident radiation beam (wide-sense sta-
tionary, ergodic) with an average flux of A photons (or particles or neutrinos) per second.
The generation of photons at random times ¢; can be described by a staircase function, with
discontinuities at time locations ¢; (see figure 8.11):

Z(t) = > U(t—t;), U(t) = unit-step function (8.87)
1 fort >0
v = {0 fort <0

The photon flow rate [number of photons per second] follows from time differentiation of the

Z(t) | Poisson process: L. U (t—t,)

| [0 & t

Figure 8.11: Staircase function describing a Poisson process.

stochastic variable Z(t):
dz(t
X(t) = % = 6(t—t) (8.88)
i

and represents a train of Dirac impulses at random time locations ¢;.

At a constant photon rate, X (¢) is a wide sense stationary (WSS) stochastic signal with a
time independent average m = ) photons per second, ) is the rate parameter characteristic
for the process under consideration.

We can now express the stochastic process Z(t), displayed in figure (8.11), in the following

way:
t

Z(t) = / X(¢)dt = / SO — ti)dt = k(0,1) (8.89)
0

169



in which k(¢1, t2) represents the number of photons in a time period (¢1,¢2) of length t = to—#;.
This number k(¢1,t2) is a Poisson distributed random variable (RV) with parameter A¢, i.e.
Z(t) expresses an unfiltered Poisson process:

(At)* oM
K! ’
Note: For Poisson distributed RVs hold that if two time periods (¢1,t2) and (t3,t4) are con-
sidered that are non-overlapping, then the RVs k(1,2) and k(t3,¢4) are independent.

From expression (8.90) we can construct a Poissonian probability density function featuring
a continuous random variable (k):

p{k, \t} = with X\ the rate parameter (see above) (8.90)

oo

p(k, A\t) = Z p(k,At)o(k — k) (8.91)
k=0

The average value of x and of x? for assessment of the fluctuation magnitude follow from:

+00
B{x} — / K (s, M)dr = At (8.92)

—0o0

+00
E{x’} = / K2 p(k, Mt)dk = (M)? + At (8.93)

—0o0
The average value for k = At in equation (8.92) is of course as expected; the first term of
equation (8.93) is the square of the average and its second term represents the variance.
Since the variance of the fluctuations associated with the flow of the photons equals A¢, the

standard deviation becomes v At, i.e. the ’strength’ of the noise in the photon flow. The
relative fluctuation or signal to noise ratio (SNR) is then:

"
SNR=-"— =Xt 8.94
~ (8.94)

Consequently, the larger At, the smaller the relative shot noise in the photon flow. With very
small A we apparently need a long filter time to suppress this shot noise.

To determine the autocorrelation function Rz(t1,t2) of the Poisson process Z(t) let us first
consider ty > t1. The variables k(0, ¢1) and k(¢1, t2), referring to adjacent but non-overlapping
time periods, are then independent Poisson variables with parameters Aty and A(ty — ¢;)
respectively. Thus we have:

E{k(0,t))k(t1,t2)} = E{k(0,t)}B{k(t,t2)} = N2t1(to — 1), also = (8.95)
k(ti,t2) = k(0,t2) —k(0,t1) = Z(t2) — Z(t1),= in (8.95) =
E{Z(t)[Z(t2) = Z(t)]} = Rz(ti,t2) —E{Z°(t1)} =
Rz(ti,ta) = MNti(ta —t1) + N2+ My = N2tta + My (8.96)
If ty <t = Ry(ti,ta) = Ntity + Mo (8.97)
Introducing the autocovariance Cy(t1,t2) of Z(t) we can write:

Ry(t1,ta) = Ntity + Cy(ty, t2) = N2tity + MU (o — t1) + MUt — to) (8.98)

Regarding the stochastic variable X (¢), the time derivative of Z(¢) and representing the train
of Dirac impulses at random time locations, we have the time independent average value
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E{X(t)} = XA = the rate parameter.
The autocorrelation function follows from successive partial differentiation of the autocorre-
lation of Z(t) with respect to ¢; and ty, thus:

0’Ry(ty,t3)

Bx(tit2) = Ot 0ty

=A+6(ta —t1) (8.99)
Designating the time difference (t, — ;) = 7, we arrive at the general expression for the
autocorrelation of a train of unit-value Dirac impulses at random time positions (WSS ergodic
signal):

Rx (1) = A2 + X\o(7) (8.100)
The second term in equation (11.52) represents the covariance C(7) of X (¢), which equals
in this case the variance C(0) since it is zero for every value of 7 except for 7 = 0. This

is of course evident, since the Dirac impulses are randomly distributed in time and are thus
mutually completely uncorrelated.
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Chapter 9

Astronomical measuring process:
information transfer

9.1 Integral response function for astronomical measurements

In observational astrophysics, the system response to an incoming radiation field can be char-
acterised by a filtering process, arising from the individual elements making up the telescope
configuration, of a stochastic process described by the monochromatic intensity I (u,ﬁ,t).
Generally, the time dependent output of the telescope is described by

X(t) = S(t) + N () (9.1)

in which S(t) represents the outcome of the filtering of the signal source and N(t) represents
the sum of all (filtered) noise components like background radiation, disturbances arising from
the operational environment and intrinsic noise in the detection system, like dark current.
The measuring process of the source signal S(¢) can be symbolically written as a series of
consecutive convolutions, defined by the angular and the spectral response functions of the
observational instrument:

S(t) = / R(v) * / [1(8,v,) « P(6,0)] d3| (9.2)
Av AQrov

P(Q,V) represents the collecting power of the telescope. which depends in general on the
frequency (or wavelength, or energy). It is a function of the telescope off-axis angle in the field
of view (pov and contains the point spread function H (Q, v), which quantitatively describes
the angular resolution (field position dependent). AQroy gives the solid angle over which the
convolution I(Q, v, t) x P($, ) is to be integrated. The choice of AQ oy entirely depends on
the number of image elements in the field of view, which may be as large as 10® in modern
systems, and on the objective of the particular observation (e.g. ultimate angular resolution
or high quality spectrum over a relatively large part of the field of view). Accordingly the
integral can be done over the whole field of view 0 rov, which may cover a large part of the
sky in the case of wide-field cameras, or it may be done over just one image pixel.

The integration of the signal after the second convolution with R(v) covers the spectral
range of interest Av, which is part of the total bandwidth v. Again, this may vary from a very
narrow range (e.g. measuring the line profile of a single spectral line) to a very broad range
(in case of photometry). The number of frequency elements can therefore range from 1 (e.g.
in the case of a bolometric detector) to approximately 10° in a high-resolution spectrograph.
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It is important to remember continually that the term frequency covers here three types
of Fourier pairs.

— -

e The pair I(£2) < I(() refers to spatial resolution, the frequency 5 in the Fourier domain
has to be interpreted as spatial frequency. This refers to structures in the image contrast.

e The pair I(v) < I(s) refers to spectral resolution, in this case s is a Fourier frequency
which relates to a spectral frequency. A spectrum containing a large number of sharp fea-
tures, like narrow emission and absorption lines, possesses much power in high spectral
frequencies; a featureless continuum contains only low spectral frequencies.

e The pair I(t) < I(f) refers to time resolution, the frequency f relates to temporal
frequency.

Every measurement or observation implies bandwidth limitations on each of these frequencies.

The normalised value of the Fourier transform of a particular instrument response func-
tion, e.g. R(s) or H((), is called the Modulation Transfer Function (MTF) and describes the
frequency dependent filtering of the source signal in the Fourier domain. The MTF refers
either to the amplitude/phase transfer function of the signal or to the power transfer func-
tion, in practice this will be explicitly clear from the specific context in which the MTF is

employed.

9.2 Time filtering

9.2.1 Finite exposure and time resolution

In practice, the measurement or registration of a stochastic process always takes place over a
finite period T" and with a certain resolution AT, i.e. the minimum time bin for a data point.
The limitation in measuring time 7" corresponds to a multiplication in the time domain of a
stochastic variable X (¢) with a window (block) function II(¢#/7"). This function is described
as follows,

t 1
I (T) =1 for fl<,T (9.3)
£\ 1
II <?> = 0 for |t] > §T (9.4)
(9.5)

Consequently a new, time filtered, stochastic variable Y (¢) is introduced:

Y(t) =TI (i) X(t) (9.6)
T
The limitation in time resolution always arises in practice due to the frequency-limited trans-
mission characteristic of any physical measuring device.

Suppose, as an example, the measurement is taken at time ¢ within the measuring period T’
with a temporal resolution AT'. This corresponds to an integration of the stochastic variable
Y (t) between t — AT'/2 and ¢t + AT /2, divided by AT (a so called running average). It follows
that

i 1 ey
20 =Yart) = 5m [ v = [m ( = ) Y (t')dt 9.7)
t—AT/2 —00
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This equation can also be expressed in terms of a convolution in the time domain:

1 t 1 t t
Z(t)=-—=l|— | *xY(t) = —=I | — | x| =) X(¢ .
)= A7 (AT) Y0 =37 (AT) ’ <T> Q (6:8)
which represents a low-frequency (or ‘low-pass’) filtering of the stochastic variable Y (¢). The
values pup and Rp(7) for an ergodic process obtained from a finite measuring period 7' will

therefore slightly differ from the true values p and R(7). The error introduced by measuring
the sample average pr rather than the true average p is the subject of the next paragraph.

9.2.2 FError assessment in sample average

We wish to determine the accuracy with which the approximate value pp approaches the
real value p. An illustration of this is given in Figure9.1. To do so we start by noting that
determining the average corresponds to convolution in the time domain with a block function.
We denote this

X(t) = |7l (%) | = X7 (9.9)

In terms of the Fourier transforms, the averaging corresponds to a multiplication with a sinc-
function. In general, we write the effect of the measuring apparatus on the signal in the
Fourier domain as Y (f) = X(f)H(f) and hence Y*(f) = X*(f)H*(f), and with H(f) the
transfer function. We can thus also write |Y (f)|? = | X (f)|*|H(f)|*.

Note: in the literature the term transfer function is used both for H(f), i.e. the signal
transfer function, but also for |H(f)|?, i.e. the power transfer function. So be prepared for the
correct interpretation whenever you encounter the term transfer function in the literature!
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With this we take the Fourier transform of the autocorrelation, to find:

Sxz(f) = [H(F)PSx () (f) = sinc®(Tf) - Sxr) (f) (9.10)

Transforming back to the time domain, we write this as
RXT(T) = h(T) *h(T) *RX(t) (911)

and note that h = (1/T)II(¢/T) is a real function. We note that the convolution of a block
with itself is a triangle, and introduce the notation:

h(r)  h(r) = p(r) = %A (%)

to rewrite 9.11 as

RXT(T):%A (%>*RX T/ ( ) o — )’ 9.12)

For convenience we consider the case where y =0, i.e. R = C, and find

Cxp (T T/ ( ) p(r—7")dr’ (9.13)

To compute the variance we set 7 = 0 and find

Cren(0) = [ T/ ( ) o (—7)dr’ —T/ ( ) o(T)dr (9.14)

where we have used the fact that C is even. Explicitly writing A we finally obtain

oxel? = o 7T( - oo (9.15)
-T

Two things are to be noted in this equation. First: the integral ranges from —T to +7T,
i.e. over a range with length 27, but nonetheless the normalization factor is 1/T. Second,
the autocovariance is always limited in the frequency domain. As an example we consider a
specific form for the transfer function, viz.:

1

H(f) = ——— 9.16
(£) 14 2w fr, ( )
At small frequencies f < 1/(277,) = f, the transfer is complete, i.e. |H(f)| = 1, and at
high frequencies f > f, the transfer is inversely proportional to the temporal frequency, i.e.
|H(f)| = fo/f- The frequency f, is the ‘cut-off’ frequency of the transfer function H(f). We
will forego the full mathematics here, and merely conclude that the autocovariance with such

a system drops exponentially with (the absolute value of) the time difference 7:

1

Cx(r) = OX(t)(O)ei‘TVTO where Ty = o]
o

(9.17)
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This means that at times 7 > 7, the correlation is virtually zero. By entering 9.17 into 9.15
and performing the integration, we get

2 _ 27, To —T/7
[ox,]” =2 [UX(t)} T [1 T (1 —e 1 )} (9.18)

To get a feeling for the meaning of this equation we consider two limiting cases. First the
one in which the duration of the measurement largely exceeds the correlation time, T > 7.
Eq. 9.18 then becomes

27 [‘7/\’(t)]2

[UXT]2 =2 [UX(t)] T 7#7

and we see that the variance of the measured signal is proportional to the variance of the
incoming signal, and approximates zero when the duration of the measurement goes to infinity,
and also when the number of frequencies over which one measures goes to infinity. The
measured signal is then said to be ergodic in the mean. The last limit can be understood
by noting that f,7" is the number of cycles during 7" with a frequency f,, i.e. it gives the
number of measurements; 9.19 thus is analogous to the equation which gives the variance of
the average o2 = 0?/N.

The other limit we consider is the one for which the duration of the measurement equals
the correlation time, T' = 7,. Eq. 9.18 in this limit becomes

(9.19)

ox.t =20xmle ! 2 oxp’ (9.20)

This is also understandable in terms of determining the average, in the case where just one
measurement is taken: N = 1.

The moral we can draw from this example is that one must take good care that the
duration of the measurement is much longer than the correlation time, T > 7,, if one wishes
to avoid large errors in the estimates of the average and of the variance. Another moral is
that we must take into account the errors in the average and in the variance whenever we are
looking for really small effects.

9.3 Data sampling in a bandlimited measuring system: Criti-
cal or Nyquist frequency

Let us consider the general case of a signal S(z) which has been subject to the instrument
response R(z), so that the resulting measurement M (x) follows from

M(z) = S(z) * R(x) (9.21)

Because of the finite frequency response of the instrument, M (z) is always limited in
bandwidth, i.e. the Fourier transform M(s) < M(z) is a bandwidth-limited function. This
function is characterised by a maximum cut-off frequency s;,q., also called the critical or
Nyquist frequency (s.). In the case of a gaussian response the frequencies will never be
distributed purely gaussian, since no physical system can transmit the tail frequencies up
to 0o. Shannon (and Nyquist) established a theorem for optimum sampling of band limited
observations. This theorem states that no information is lost if sampling occurs at intervals
T =1/(2s).

Let M(x) subsequently be sampled at regular intervals, M (z) — M (n7) with n an integer
and 7 the sampling interval. To describe the sampling process quantitatively we introduce
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the shah function, also called the comb of Dirac, which constitutes a series of § functions at
regular distances equal to 1:

1ll(z) = Z 5(z —n) (9.22)

This shah function can be extended to arbitrary distances by noting alll(az) =3, é(x —

n/a).

The sampled signal M (z) can now be expressed as

My(2) = 3 M(nr)s(a — nr) = %J_I_L (f) M(2) (9.23)
The Fourier transform M;(s) < M(x) equals
My(s) = LLL(rs)  M(s) = %ZM <3 - 2) (9.24)

This expression shows that, except for a proportionality factor 1/7, My(s) represents a series
of replications of M (s) at intervals 1/7. Because M (s) is a bandwidth-limited function with a
cut-off frequency of say s = s., we can recover fully the single (i.e. not repeated) function M (s)
from this series by multiplication with 7 and by filtering with the gate function II(s/2s.):

II <2i> TLLL(7s) * M(s) < 2ssinc2s.z « L1 1 <§> M (z) (9.25)
Se T

M (x) can be reconstructed exactly if the series of M (s) functions in the frequency domain

touch without overlap. This is the case if we sample at 7 = 1/(2s.), which therefore is the

optimum sample interval. Performing the convolution we fully reconstruct M (x), i.e.:

+00

M(x) = / sinc (w — xl) zn:M(nT)d(m' —n7)dz’ = zn:sinc <x — nT) M(nT) (9.26)

T T
—00
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Figure 9.3: The function h(t) shown in the top panel is undersampled. This means that the
sampling interval A is larger than Zfﬁ The lower panel shows that in this case the power in

the frequencies above ﬁ is ‘'mirrored’ with respect to this frequency and produces an aliased
transform which deviates from the true Fourier transform. Credit Press et al (1992).

We can check this result easily at a sampling point = j7, with sinc(j —n) = 1 for j = n and
=0 for j # n:
M(z) = M(jT) (9.27)

Note: 9.25 shows that the calculation of intermediate points from samples does not of
course depend on calculating Fourier transforms. The equivalent operation in the z-domain
entails the convolution of 2s.sinc2s.z directly with 11 | (z/7)M (z). Notice that the omission
of the 1/7 factor in 9.23 ensures the proper normalization in the s-domain!

Expression 9.26 shows that a superposition of a series of sinc-functions with weight factors
M (nT), i.e. the sample values, at intervals 7 exactly reconstruct the continuous function M (z).
In fact the sinc-functions provide the proper interpolation between the consecutive sample
points, this is the reason why the sinc-function is sometimes referred to as the interpolation
function.

Thus, the use of a discrete Fourier transform causes no loss of information, provided that
the sampling frequency % is twice the highest frequency in the continuous input function (i.e.
the source function convolved with the response function). The maximum frequency Sz
that can be determined for a given sampling interval equals therefore % If the input signal
is sampled too slowly, i.e. if the signal contains frequencies higher than %, then these cannot
be determined after the sampling process and the finer details will be lost (see Fig.9.2).
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More seriously however, the higher frequencies which are not resolved will beat with the
measured frequencies and produce spurious components in the frequency domain below the
Nyquist frequency. This effect is known as aliasing and may give rise to major problems and
uncertainties in the determination of the source function, see figure 9.3 in the case of a time
function.
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Chapter 10

Indirect Imaging and Spectroscopy

10.1 Coherence

10.1.1 The Visibility function

The coherence phenomenon is directly coupled to correlation, and the degree of coherence of
an EM-wave field E(7,t) can be quantitativily described by employing the auto- and cross-
correlation technique for the analysis of a stochastic process.
The electric vector of the wave field at a position 7 at time ¢, F (7,t), is a complex quantity,
denoting the amplitude and phase of the field. To assess the coherence phenomenon, the
question to be answered is: how do the nature of the source and the geometrical configuration
of the situation relate to the resulting phase correlation between two laterally spaced points
in the wave field?
This brings to mind Young’s interference experiment in which a primary monochromatic
source S illuminates two pinholes in an opaque screen, see figure 10.1. The pinholes S; and
So act as secondary sources, generating a fringe pattern on a distant observation plane Y. If
S is an idealized monochromatic point source, the wavelets issuing from any set of apertures
S1 and Sy will maintain a constant relative phase; they are precisely correlated and therefore
mutually fully coherent. On the observation plane 3o a well-defined array of stable fringes
will result and the radiation field is spatially coherent. At the other extreme, if the pinholes Sy
and Sy are illuminated by separate thermal sources (even with narrow frequency bandwidths),
no correlation exists; no fringes will be observable in the observation plane ¥ and the fields
at §1 and S9 are said to be incoherent. The generation of interference fringes is seemingly a
convenient measure of the degree of coherence of a radiation field. The quality of the fringes
produced by an interferometric system can be described quantitativily using the Visibility
function V-

V= Imaw - Imm (101)

Imaw + Imm

here I),4» and I,,,;, are the irradiances corresponding to the maximum and adjacent minimum
in the fringe system.

10.1.2 Young’s dual beam interference experiment

To assess the mutual coherence between two positions in a radiation field in a quantitative
fashion, consider the situation displayed in figure 10.1, with an extended narrow bandwidth
radiation source S, which generates fields E(r,t) = Ei(t) at S and E(7,t) = FEx(t) at Ss,
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Figure 10.1: Young’s experiment using a quasi-monochromatic source S illuminating two

pinholes Sy and So. Credit Hecht (1987).

respectively. Interalia: no polarization effects are considered, and therefore a scalar treatment
using E(7,t) will suffice.

If these two positions in the radiation field are isolated using an opaque screen with two small
apertures, we are back to Young’s experimental set-up. The two apertures serve as sources of
secondary wavelets, which propagate out to some point P on the observation plane . The
resultant field at P is: . o o

Ep(t) = ClEl(t—tl) +02E2(t—t2) (10.2)

with ¢; = r1/c and t2 = ro/c, r1 and ry representing the pathlengths to P as measured from
S1 and So, respectively. This expression tells us that the field at the space-time point (P,t)
can be determined from the field that existed at S7 and S at (t —t1) and (¢ —t3), respectively,
these being the the instants when the light, which is now overlapping at P, first emerged
from the apertures. The quantities C, and Cy are so-called propagators, they mathematically
reflect the alterations in the field resulting from it having transversed either of the apertures.
For example, the secondary wavelets issuing from the pinholes in the Young set-up are out of
phase by m/2 radians with the primary wave incident on the aperture screen. In that case,
C, and C, are purely imaginary numbers equal to e/,

10.1.3 The mutual coherence function

The resultant irradiance at P, averaged over some time interval which is long compared to
the coherence time, is:

I= E{Ep(t)E;;(t)} (10.3)
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Employing equation ( 10.2) this can be written as:
I = C’IC’fE{El(t—tl) i“(t—tl)}
{Balt —t2) B3 (t— 1)}
+ CLC3E{Ey(t — t) B3 (t — 1) |
{Bi(t—t)Es(t — ta) } (10.4)

+ CLC3E

+ éféQE

It is now assumed that the wave field is stationary, as is almost universally the case, i.e. the
statistical nature of the wave field does not alter with time and the time average is independent
of whatever time origin we select (the Wide Sense Stationary situation as described in Chapter
1). Accordingly, the first two expectation values in equation (10.4) can be rewritten as:

Is, = B{E()E{ (1)} and Is, = B{E:(1)E} (1) (105)

where the time origin was displaced by amounts ¢; and t9, respectively. The subscripts for
the irradiances used here underscore the fact that they refer to the values at points S; and
So. Furthermore, if we introduce the time difference 7 = ¢ — t1, the time origin of the last
two terms can be shifted by an amount t yielding:

CiC3E{Ey(t+ 1) B3 (1)} + CiOE { B (t+ 1) Ba(t) | (10.6)

This expression comprises a complex quantity plus its own complex conjugate and is therefore
equal to twice its Real part:

2 Re [C’l@‘E {El (t + T)E;(t)}} (10.7)

As noted before, the C-coefficients are purely imaginary, i.e. C;C5 = C;Cy = |C1]|Cyl.
The expectation value contained in expression (10.7) is a cross-correlation function, which is
denoted by:

Pio(r) = B{Ei(t+ ) B3 (1)} (10.8)

This equation is referred to as the mutual coherence function of the wave field at positions
S1 and S. Making use of the definitions above, equation (10.4) now takes the form:

= |C1*Is, + |Co|*Is, + 2|C1||Ca| Re T1a(7) (10.9)

The terms |Cy|%Is, and |Cy|*Is, are the irradiance at P, arising when one or the other of the
apertures is open alone: either C; = 0 or Co = 0. Denoting these irradiances as I; and I we

have: o :
I =1 +I2+2|Ol||02| Re F12(7’) (10.10)

If S7 and S, are made to coincide, the mutual coherence function becomes the autocorrelation
function:

Piu(r) = Ri(r) = B{E(t+n)E{ (1)} (10.11)

or:

Pos(7) = Ro(r) = E{By(t+7)E;5(1)} (10.12)

182



One can imagine that two wavetrains emerge from these coalesced pinholes and somehow pick
up a relative phase delay 7. In the situation at hand 7 = 0, since the optical path difference
(shorthand: OPD) goes to zero. Hence:

Is, = B{B\®WE; ()} = Tu(0) = E{|E(#)}*} and
Is, = B{B(E}(1)} = I'n(0) = B{|B()} (10.13)

These autocorrelation functions are also called self-coherence functions. For 7 = 0 they repre-
sent the (average) irradiance (power) of the radiation field at positions S; and S respectively.

10.1.4 Interference law for a partially coherent radiation field: the complex
degree of coherence

From equation (10.10) and the selfcoherence functions we can now write:

___VIvE
VT'11(0)y/T'22(0)

Hence, the normalized expression for the mutual coherence function can now be defined as:

|C1]|Cs| (10.14)

- f‘12(7) - {El (t i T)Eék(t)}
L ) (10.15)
Y12 VT11(0)T2(0) \/E {|E1(t)|2} E {|E2(t)|2}

This quantity is referred to as the complex degree of coherence, equation (10.10) can
now be recast into its final form:

I =1 + 1, + 21,15 Re ’712(7') (10.16)

which is the general interference law for a partially coherent radiation field.

The quantity J12(7) simultaneously gives a measure of the spatial coherence by comparison of
two locations in space (S7 and So in the above case) and the coherence in the time domain
by accounting for a time lag 7 between both signals.

F12(7) is a complex variable and can be written as:

H2(r) = (7)) (10.17)

From equation (10.15) and the Schwarz inequality it is clear that 0 < |§12(7)] < 1. The
phase angle 1)15(7) of 412(7) relates to the phase angle between the fields at S; and S and
the phase angle difference concomitant with the OPD in P resulting in the time lag 7, as
shown in equation (10.8). For quasi-monochromatic radiation at a mean wavelength \ and
frequency 7, the phase difference ¢ due to the OPD can be expressed as:

2
¢ = %(7’2—7’1) = 27 (10.18)

If we designate a phase angle ay2(7) between the fields at S; and Sy, we have

P12(7) = [aa2(1) — ¢)].

Hence:
Re 12(1) = [112(7)| cos [a12(T) — ¢] (10.19)
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Figure 10.2: Partially coherent intensity fluctuations in a thermal radiation source. Both
absolute values T and relative values AT = I — T are shown. Credit Hecht (1987).

Substitution of this expression in the interference law for partially coherent radiation given in
equation (10.16) yields for the intensity observed at point P on the observation plane ¥¢:

I = Il + IQ + 2\/[1[2 |’3’12(7’)|COS [0112(7') —gb] (1020)

The maximum and minimum values of I occur if the cosine term in equation (10.20) equals
+1 and —1, respectively. The Visibility V' (see definition (10.1)) at position P can therefore

be expressed as:
VIV
V=—"——- 10.21
I 15 [F12(7)] (10.21)

In practice, frequently things are (or can be) adjusted in such a way that I; = I, giving rise
to the following simplified expressions for the total irradiance I and Visibility V:

I = 2[[] {1 + |’3’12(7’)| COS [0[12(7') - gb]} and V = |’3’12(7’)| (1022)

We note that in this case the modulus of the complex degree of coherence is identical to the
visibility of the fringes ! This then provides an experimental means of obtaining |¥12(7)| from
the resultant fringe pattern. Moreover, the off-axis shift in the location of the central fringe
(no OPD — ¢ = 0) is a measure of a12(7), the relative retardation in phase of the fields at Sy
and So. Thus, measurements of the visibility and the fringe position yield both the amplitude
and phase of the complex degree of coherence.

Note: Dealing with the definition of the complex degree of coherence, it was noted that the
intensity fluctuations are also expected to be partially coherent, since the amplitude and phase
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fluctuations in a thermal signal tend to track each other. An impression of such a fluctuating
wave signal is given in figure 10.2, both in absolute value and centered around the avarage val-
ue I: AI = I—1. The random superposition of wave packets results in a Gaussian distribution
of the amplitude fluctuations for one direction of polarisation and, consequently, is sometimes
referred to as Gaussian light. This fact directly follows from the central limit theorem. Taking
the cross-correlation E {AI(t + 7)AI(t)} between two different parts of the incoming radi-
ation beam yields now in principle an interferometric tool, which does not involve the usage
of phase information. This technique, labelled as correlation or intensity-interferometry, can
indeed be succesfully applied for very bright stellar sources to obtain accurate estimations
of stellar angular diameters. It was first tried in radio astronomy in the middle 1950’s, and
later on (1956) also succesfully used in an optical stellar interferometer by Hanbury Brown
and Twiss. They employed search-light mirrors to collect starlight onto two apertures, which
was then focussed on two photomultiplier devices. Although photomultipliers operate on the
photo-electric effect, which is keyed to the quantum nature of the optical light, laboratory
experiments showed that the correlation effect was indeed preserved in the process of photo-
electric emission.

The star Sirius was the first to be examined, and it was found to possess an angular diameter
of 6.9 milliseconds of arc. For certain stars angular diameters of as little as 0.5 milliseconds
of arc can be measured in this way.

10.2 Indirect spectroscopy

10.2.1 Temporal coherence

Temporal coherence is characterised by the coherence time 7. . The value of 7. follows from
the finite bandwidth of the radiation source under consideration. If we assume a quasi-
monochromatic (QM) source, then we have 7. ~ - with Av the line width (in radiation
frequency) of the QM-source.

These effects can be assessed with the aid of the Wiener-Khinchine theorem:

+00
S(v) = / R(1)e™ 2™ dr (10.23)

+00
R(r) = / S(1)e T dy (10.24)

Take as an example a Gaussian shaped spectral line profile, i.e.

v 2

S0) ~ e (&) = R(r) ~ e (B) (10.25)

As can be seen from the FT (indicated by <= in expression(10.25), the wave packet cor-
responding to this line profile has an autocorrelation function that is also Gaussian with a
characteristic width 7., moreover the autocorrelation R(T) equals the autocovariance C(1).
This corresponds to a wave train with a Gaussian shaped envelope for the wave amplitude
(see figure 10.3).

Try to memorize the following notions:

e A first order system shows an exponential autocorrelation function R(7) (see Chapter
2, section 2.2.2).
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Figure 10.3: A Gaussian shaped line profile of a quasi-monochromatic radiation source and
the shape of the associated wavepacket. Credit Hecht (1987).

e A Gaussian line profile in the frequency domain shows an amplitude modulated wave
train with a Gaussian envelope in the time domain (see discussion above).

e A Lorentz line profile in the frequency domain shows an exponentially damped oscillator
profile in the time domain (¢ry this yourself).

For spectroscopic measurements at infrared and shorter wavelengths one can directly disperse
the incoming radiation beam with the aid of a wavelength dispersive device, like for instance a
transmission or a reflection grating, and measure the resulting intensity distribution (i.e. the
spectrum). However for spectroscopy at radio and submillimeter wavelengths one employs an
indirect method. The incoming wave signal is fed into a correlator that produces the temporal
coherence function R(7), a subsequent FT of this function yields the spectral distribution S(v)
by virtue of the Wiener-Khinchine relation.

10.2.2 Longitudinal correlation
Associated with the coherence time 7, is the so-called coherence length [, = c7,.

Problem: Show that the coherence length can also be expressed as [ = g—i\ in which A
refers to the equivalent of Av in the wavelength domain.

Now consider an EM-wave that propagates along a vector 7, and mark two positions P;
and P, on this line of propagation at a mutual distance Rio. If Ry < I, there will be
a strong correlation between the EM-fields at P; and P> and as a consequence interference
effects will be possible. In the case of Rjs > [., no interference effects are possible. This
effect (i.e. potential interference yes or no) relates to the so-called longitudinal correlation or
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Figure 10.4: The influence of the coherence length on the interference pattern of two diffracted

coherent thermal radiation sources S1 and So. Credit Hecht (1987).

longitudinal spatial coherence.

This effect can be clearly demonstrated by considering the wave trains in Young’s interference
experiment (see figure10.4 ). The diffracted beams emanating from S; and S, which are
coherent radiation sources, cause an interference pattern. However, in the case of large path
differences the interference contrast will diminish, since corresponding wave packets in the
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Figure 10.5: Interferogram displaying the idealized irradiance as a function of the y-coordinate
of the fringes in the observation plane Xo. Credit Hecht (1987).

stochastic signal no longer overlap (see figure 10.4: packet H; and Hy = packet I; and Hs).

10.3 Indirect Imaging

10.3.1 Quasi-monochromatic point source: spatial response function of a
two-element interferometer

If we apply equation (10.22) to the situation of a quasi-monochromatic point source S, located
on the central axis, the wavelets emanating from two infinitesimal pinholes S and Sy (fictitious
case!) will be fully coherent and exactly in phase (aj2(7) = 0) and constitute two coherent
secondary sources. Interference will occur, provided the OPD between the interfering beams
is less than the coherence length | = c7.. With V = |¥12(7)| = 1, the equation for the total
irradiance in (10.22) reduces to:

I = 2Ih(1 +cos¢) = 4l c082§ (10.26)

Taking a distance a between the pinholes and assuming that the distance s to the observation
plane ¥¢ is very much larger than a, we can express the path difference (r, — 1) in equation
(10.18) for ¢ in good approximation by:

y (10.27)

r9 —ry = a = 4
S
Here y is the linear coordinate in the observation plane Yo, starting from the intersection
of the central axis with this plane and running perpendicular to the fringes. Substituting ¢
in equation (10.26) by combining (10.18) and (10.27) we get an analytical expression for the
interferogram in ¥o:

I = 4I, cos”—“Xy (10.28)

S

This (idealized) irradiance versus distance distribution is displayed in figure 10.5 and consti-
tutes basically the response of an ideal two-element interferometer to a monochromatic point
source, i.e. the PSF of an ideal two-element interferometer.
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The derivation of the actual PSF for a non-ideal two-element interferometer, that also ac-
counts for the finite size of the apertures, can be accomplished by utilizing the concept of the
pupil function which was treated for single apertures in Chapter 7 (on Imaging in Astronomy)
of the OAF1 course. This concept will now first be applied to a two-element interferometer,
starting with the assumption of infinitesimal apertures (the ideal case discussed above) and
subsequently by implementing the practical case with finite aperture sizes. Later on in this
chapter, with the introduction of aperture synthesis, this will be extended to the derivation of
the point source response function (PSF) and the optical transfer function (OTF) for multi-
aperture arrays.

Consider two circular apertures with diameter d separated by a baseline direction vector §.
Take the origin of the pupil function P(7) on the baseline vector § symmetrically positioned
between the two apertures. The pupil function P(7) can now be expressed as:

P() = 11 <F_d§/2> + 10 (T +d3/2> (10.29)

with IT the 2-dimensional circular window function.
Introducing the spatial frequency variable { = /), the pupil function can be rewritten

P = (%) 4 (CJ;X%) (10.30)

Now if the diameter d of the apertures is assumed to be very much smaller than the length
|3] = D of the baseline vector, i.e. d < D, the pupil function can be approximated by:

P) =6 (J=5/27) + 0 (C+5/20) (10.31)

The optical tranfer function (OTF) for this limiting case of infinitesimal apertures, follows
from the self-convolution of the the function (A/R)P((). Since we have a symmetrical pupil
function in this case, the self-convolution is identical to the autocorrelation of (A\/R)P(():

OTF = Hy(0) = () [ PEPE -0

)L o) o)
: [ (g —{=5/20) + 6 (&= {+5/20) ] dl”
_ (%)2 [5(5) 4 %5 (C—5/2) + %5 ¢+ g/x)] (10.32)

This OTF shows that the pair of pinholes transmits three principal spatial frequencies: a
DC-component §(0) and two high frequencies related to the length of the baseline vector
§at £5/A. These three spatial frequencies represent a three-point sampling of the so-called
uv-plane in 2-dimensional frequency(Fourier) space. Note: Full frequency sampling of the uv-
plane will allow complete reconstruction of the brightness distribution of the celestial source
being observed!

The PSF follows from FT{H,(()}:

§(C) < 1 (2-dimensional sheet!)
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= PSF = ( ) 1+ cos 270 - s/A)] = 4(%) cos® 70 - 5/ (10.33)

Cn

in which 6 represents the 2-dimensional angular coordinate vector used to describe
the angular distribution of the diffracted image. The attenuation factor (\/R)? results from
the spherical expansion of the diffracted field in the Fraunhofer limit.

If we assume a light flux Iy emanating from each pinhole, we can express the brightness
distribution for the diffracted beam as:

I = 4Iycos® 70 - 3/ (10.34)

This is the same equation we derived before with the aid of the interference law for partially
coherent light, but now in a two-dimensional setting with € replacing y/s and § replacing the
pinhole distance a in equation (10.28). We have full constructive interference:

6.5 - nA
I = 41, for — = =0,+1,£2,...) — = — 10.35
o for A n( ) ) ) ) | | |§|COS¢ ( )
and full destructive interference:
g-3 1 1 3 5 L (n+ DA
I =0for — = V(= &=, =, +—, ... 0 = ———2° 10.
0 for (nt3)(= dg5 550 = 0] = i (10.36)

with cos ¢ the angle between 6 and the baseline vector 3.

The PSF represents a corrugated sheet with its modulation along the direction of the baseline
vector § and a periodicity (Af)s = A/|5], i.e. a pattern of alternating bright and dark stripes
orthogonal to the direction of the baseline vector 3.

In actuality, the apertures have a finite size and the diffracted light by the apertures is
localized, so we have d < S but the approximation by J-functions for infinitesimal apertures
no longer holds! The PSF has now to be derived from the amplitude of the diffracted field by
FT of the pupil function given in expression 10.30:

a(f) % {H{% <5— %)} + H{ <§+ 2;)}} (10.37)

Applying the shift and scaling theorems from Fourier theory, i.e. if f(z) < F(s) then fla(z —
b)] « (727 /) F(s/a), we find for the amplitude of the diffracted field:

7 AN 1 2J1(n|01d/N)] ( _omidis e
(10]) = (E) {Zﬂ' (d/)\)ﬂ [%] (e 2mif-5/2\ | 2mif /2/\)

- 2(3) [ (2500

Q

—

cost- §/d with d=mn60d/\

- A2 1 2120, (|@])]?
PSF = |a(|d])|? = 4 <—> [—w(d/x)ﬂ [M cos - 7/d (10.38)
R) |4 |7 |
Again we have full constructive interference for:
6-3 - nA
— = = 0,£1,%£2,... 0 = — 10.39
= n(=0EL£2,.) - |4 Fcosd (10.39)

190



r10.64
F10.36
0.16
0.04
0.00
-6 —4 -2 0 2 4 6
Ux

Figure 10.6: PSF of a single circular aperture in pseudo-color as a function of the 2D-position
vector U (A-invariant display).

and full destructive interference for:

g3 1 1 3 5 L (n+ L
= S G S B S g =-—2" 10.4
=t g) (= EgEgE ) = 16 Toosd (10.40)

with cos ¢ the angle between 6 and the baseline vector 3.
The first two terms in the expression for the PSF give the normalisation for |§ | = 0. The other
terms represent a corrugated 2-dimensional Airy brightness distribution, intensity-modulated
along the direction of the baseline vector § with periodicity (Af)s = A\/|5], i.e. a pattern of al-
ternating bright and dark annuli at a pitch determined by (Af)g = 1.220)\/d, 2.233\/d, 3.238\/d, ...
of the individual telescope mirrors as shown in figure 10.6 in pseudo-color superimposed by
periodic drop-outs in brightness orthogonal to the direction of the baseline vector § at a pitch
determined by (A@)s = A/|§|. This corrugated 2-dimensional Airy brightness distribution is
also displayed (A-invariant) in pseudo-color code as a function of the 2-D position vector 4 in
figure 10.7

A typical one-dimensional cross-section along u, = 0 of the central part of the interferogram
10.7 is sketched in figure 10.8. Note that the visibilities in both figure 10.5 and in figure 10.8
are equal to one, because I,,;, = 0.
It can be shown that |§12(7)| equals one for all values of 7 and any pair of spatial points, if and
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Figure 10.7: PSF of a two-element interferometer in pseudo-color as a function of the 2D-
position vector i (A-invariant display). The aperture diameter d equals 25 meters, the length
of the baseline vector |3| is chosen to be 144 meter.

Figure 10.8: Double beam interference fringes showing the modulation effect of diffraction by
the aperture of a single pinhole. Credit Hecht (1987).
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. (a)

Figure 10.9: Relating 412(0) to the brightness distribution of an extended radiation source S':
configuration for demonstrating the Van Cittert-Zernike theorem. Credit Hecht (1987).

only if the radiation field is strictly monochromatic, in practice such a situation is obviously
unattainable | Furthermore, a non-zero radiation field for which |¥12(7)| = 0 for all values of
7 and any pair of spatial points cannot exist in free space either.

10.3.2 Quasi-monochromatic extended source: spatial or lateral coherence

Spatial coherence (also: lateral coherence or lateral correlation) has to do with the spatial
extent of the radiation source.

Problem: Prove that for 7 < 7.
F12(T) = F12(0)*™07 (10.41)

with |¥12(7)| = |¥12(0)| and a fized phase difference a12(T) = 2wyT, 1y represents the average
frequency of the wave carrier.

In the following treatment of spatial coherence, it is implicitly assumed that the frequen-
cy bandwidth of the radiation source is suffiently narrow that the comparison between two
points with respect to spatial coherence occurs at times differing by At < 7.

Query What is the quantitative relation between the brightness distribution of the spatially
extended radiation source and the resulting phase correlation between two positions in the
radiation field?

Approach Consider again Young’s experiment for the case that the radiation source S
is extended and illuminates the pinholes S; and Sy (actually shown in figure 10.1). In
the observers plane 3, the interference is given by the expectation value of the product
Ei(t)Es(t) = BE{E1(t)E3(t)} = TI'12(0) with the subscripts 1 and 2 referring to the posi-
tions P, and P, in the Z-plane. If E; and E, are uncorrelated, then |f‘12(0)| = 0. In the case
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of full correlation |y;2| (: %) = 1, for partial correlation we have 0 < |¥12(0)] < 1.

The extended source in Young’s experiment is a collection of non-coherent infinitesimal radi-
ators, this obviously reduces the contrast in the interferogram. This contrast can be observed
and is described by the afore mentioned Visibility function V:

Imaa: - Imin ~
V=r—7"—= 0 10.42
FA—— 712(0)] (10.42)

10.3.3 The Van Cittert-Zernike theorem

So how can we now relate y12(0) (or I'12(0)) to the brightness distribution of the extended
radiation source S7

This can be done in the following way (see figure10.9). Locate S, a QM-incoherent source,
in a plane o, with an intensity distribution I(y, z). Consider next the observation plane %
parallel to o, [ is perpendicular to both planes (coincident with the X-axis) connecting the
centre of the extended source (y = 0,z = 0) to the zero reference in ¥ (Y = 0,2 = 0). Select
two positions P; and P,. The objective is to describe the value of 712(0) in this plane, i.e. the
coherence of the radiation field in ¥. Consider furthermore a small (infinitesimal) radiation
element dS in the source at distances R; and Ry from P; and P» respectivily. Suppose now
that S is not a source but an aperture of identical size and shape, and suppose that I(y, z) is
not a description of the irradiance (or intensity distribution) but, instead, its functional form
corresponds to the field distribution across that aperture. In other words imagine that there
is a transparancy at the aperture with amplitude transmission characteristics that correspond
functionally to the irradiance distribution I(y, z). Furthermore, imagine that the aperture is
illuminated by a spherical wave converging towards the fixed point P», so that a diffraction
pattern will result centered at P». This diffracted field distribution, normalised to unity at
P,, is everywhere (e.g. at P;) equal to the value of 12(0) at that point. This is the Van
Clittert-Zernike theorem.

In the limit that Ry and Rp are much larger than the source diameter and the relevant part
of the Y-plane we have the equivalent of Fraunhofer diffraction, this condition is practically
always satisfied for astronomical observations. In that case, the van Cittert-Zernike theorem
can be expressed mathematically as:

() = / / 1(§)e ™ a6 (10.43)

I(G) = A2 / / [(Fe= 5" dF (10.44)
-plane

I(€}) is the intensity distribution of the extended radiation source as a function of a unit
direction vector € as seen from the observation plane 3. Taking the centre of the extended
radiation source S as the zero-reference for ¢} (coincident with the central axis [ in figure
(10.9)) and assuming a relativily small angular extent of the source we can write I(Q) =
I(0y,0.) and d§) = df,df,, where 6, and 6, represent two orthogonal angular coordinate axes
across the source starting from the zero-reference of Q.

f(F) is the coherence function in the X-plane, the vector 7 represents an arbitrary baseline
7(X,Y) in this plane with di = dY'dZ (in the above example P P, = 7p, — 7'p,).

Expressions ( 10.43) and (10.44) for I'(7) and I($}) show that they are linked through a Fourier
transform, except for the scaling with the wavelength X. This scaling might be perceived as a

"true” Fourier transform with the conjugate variables O and 7'/ A, i.e. by expressing 7 in units
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of the wavelength A, writing the van Cittert-Zernike theorem as the Fourier pair:
1(Q) & T(7/)) (10.45)

The complex spatial degree of coherence, ¥(7), follows from:

NG
S foguree 1(2)dS1

i.e. by normalising on the total source intensity.

Note: Although the extended source S is spatially incoherent, there still exists a partially
correlated radiation field at e.g. positions P, and Ps, since all individual source elements
contribute to a specific location P in the »-plane.

3(7) (10.46)

For a derivation of the Van Cittert-Zernike relations, consider the geometry given in fig-
ure 10.10.

The observation plane ¥ contains the baseline vector 7(Y, Z) and is perpendicular to the
vector pointing at the centre of the radiation source. The angular coordinates 6, and 0,
across the source (see above) correspond to the linear coordinates of the unit direction vec-
tor Q(QX, Qy, ), i.e. the direction cosines of O relative to the X,Y, Z coordinate system
(Q% + Q% + Q% = 1). The spatial coherence of the FM-field between the two positions 1 (for
convenience chosen in the origin) and 2 is the outcome of a correlator device that produces
the output B { £y (t)E5(1)}.

In reality positions 1 and 2 are not point like, they represent radio antennae or optical reflec-
tors, we shall come back to this later. From the geometry displayed in figure 10.10, regarding
the Van Cittert-Zernike relations, we can note the following:

= If I(Q) = Iy6(€}), i.e. a point source on the X-axis, the Van Cittert-Zernike relation yields
IT(7)| = Ip and |§(7)| = 1: a plane wave hits the full Y Z-plane everywhere at the same time,
full coherence is preserved (by definition) on a plane wave front.

= Next, let us consider an infinitesimal source element in the direction QO = [y0 (ﬁ — QO).
The projection of €}y on the ¥—plane is Q'E)(Qy, Q7). There will now be a difference in path
length between positions 1 and 2 given by the projection of 7 on QO, ie. F.ﬁ() =QyvY +Qz7.
Then:

Bult) = oo™ () Z o oot 5) (10.47)
E3(t) = Eo(t)e~2rivot (10.48)

Therefore: o o
B{B(0E5 (1)} = B{|B(t)P} > = LS)e > (10.49)

Integration over the full source extent(straight forward integration, since all source elements
are spatially uncorrelated) yields:

I'(7) = / / Io($) 247/ A gy (10.50)
1, Q’ 27riﬁ.f'/)\dﬁ
5(7) = J sowee (DT (10.51)
ffsource IO(Q)dQ

The meaning of this relationship is, in physical terms, that f(F) at a certain point represents
a single Fourier component (with baseline 7) of the intensity distribution of the source with
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Figure 10.10: Van Cittert Zernike relation: reference geometry.

strength T'(7)d7. A short baseline (small |7]) corresponds to a low frequency (spatial frequency!)
component in the brightness distribution 1(6,,6.), i.e. coarse structure, large values of |7
correspond to fine structure in I(6,,0,). The diffraction limited resolution in aperture synthesis

corresponds to:
A

2Lmaa:

The factor 2 in the denominator of the expression for 6,,;, follows from the rotation symmetry
in aperture synthesis.

|7?ma:1:| = Loz = Omin = (10.52)

Example Consider a one dimensional case. This can be done by taking the slit source of
uniform intensity shown in figure 10.11 , slit width b and running coordinate £, the observation
plane ¥, running coordinate y, is located at large distance [ from the slit source (i.e. the
Fraunhofer limit is applicable). The source function can be expressed as the window function
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Figure 10.11: The coherence function 712(0) for a uniform slit source. Credit Hecht (1987).

I (%), in angular equivalent IT (%), with 8y = b/l.
Application of the Van Cittert-Zernike theorem I(€2) < I(7/\) yields:

b
m <%> & Bysinc <y—f°> — Bysine <%> (10.53)
with sinc(z) = (%) The modulus of the normalised complex coherence function becomes:
inc¥
1 (y)| = % - sinc?//\—ll’ = V = Visibility (10.54)
0

Note that:

e FEnlarging b with a factor 2, shrinks the coherence function with the same factor. This
is of course a direct consequence of the scaling law under Fourier transform.

e The width of the coherence function follows from: (y_fo) rl=y= (ﬁ—);]) If the radi-
ation source exhibitis a smooth brightness distribution over the angle 5y = A radians,
as is the case with the slit source, then 7(y) also displays a smooth distribution over a
distance of A/A meters.

e [f the brightness structure of a radiation source covers a wide range of angular scales,
say from a largest angular scale A to a smallest angular scale § (in radians), then the
spatial coherence function shows a finest detail of A\/A and a maximum extent of ~ \/¢
in meters.

10.3.4 Etendue of coherence

Consider the two-dimensional case of a circular source of uniform intensity with an angu-
lar diameter #;, the source brightness distribution can then be described as a circular two-

—

dimensional window function: () = II (0%). To compute the complex degree of coherence
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in the observation plane ¥ take again two positions, position 1 in the centre (origin, as be-
fore) and position 2 at a distance p from this centre point. Applying the van Cittert-Zernike
theorem, we find for I'(p):

I <0%> s D(p/A) = (95/2)Jpl/(:9s/0/>\)

where J; represents the Bessel function of the first kind. Normalisation to the source bright-
ness, through division by (762)/4, yields the expression for the complex degree of coherence:

(10.55)

- 2J1(m0sp/ )
= = 277 10.56
(o) = i (10.56)
The modulus of the complex degree of coherence is therefore:
N 2J1(u
) = [ (1057

with the argument of the Bessel function u = 7sp/X. We can derive the extent of the
coherence in the observation plane ¥ by evaluating Jy(u). If we take u =2, |¥(p)| = J1(2) =
0.577, i.e. the coherence in ¥ remains significant for u < 2, or p < 2)\/(w#;). The area S in
¥ over which the coherence remains significant equals mp? = 4\%/(76?). In this expression,
702 /4 equals the solid angle €2,,... subtended by the radiation source. Significant coherence
will thus exist if the following condition is satisfied:

€ =50 0uee < N2 (10.58)

The condition € = SQ,, ... = A? is called the Etendue of Coherence, to be fulfilled if coherent
detection is required!

Example Consider a red giant star, of radius rg = 1.5 x 10" meter, at a distance of 10 par-
sec. For this object #; = 107° radians. If this object is observed at A = 0.5um, the value of the
coherence radius p, on earth, on a screen normal to the incident beam is p = 2)\/(7fs) = 32
cm. In the infrared, at A\ = 25pum, the radius p is increased fifty fold to ~ 15 meter. In the
radio domain, say at A = 6 cm, p = 35 km.

In general, good coherence means a Visibility of 0.88 or better. For a uniform circular source
this occurs for v = 1, that is when p = 0.32)\/f. If we consider a narrow-bandwidth uniform
radiation source at a distance R away, we have

p = 0.32(AR)/D (10.59)

This expression is very convenient to quickly estimate the required physical parameters in
an interference or diffraction experiment. For example, if we put a red filter over a 1-mm-
diameter disk-shaped flashlight source and stand back 20 meters from it, then p = 3.8 mm,
where the mean wavelength is taken at 600 nm. This means that a set of apertures spaced
at about 4 mm or less should produce clear fringes. Evidently the area of coherence increases
with the distance R, this is why one can always find a distant bright street light to use as a
convenient source.

Important: Remember, as stated in section 1.3.1, that throughout the treatment of spatial
coherence it was assumed that the comparison between the two points occurs at times differing
by a At < 7. If this condition is not fulfilled, for example because the frequency bandwidth of
the radiation source is too large, interferometric measurements will not be possible (see section
on temporal coherence). Frequency filtering will then be required to reduce the bandwidth of
the source signal, i.e. make it more quasi-monochromatic.
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10.4 Aperture synthesis

As already elaborated in the section on indirect imaging, the positions 1 and 2 in the obser-
vation plane X are in practise not pointlike, but encompass a finite aperture in the form of a
telescope element of finite size, say a radio dish with diameter D. This dish has then a diffrac-
tion sized beam of A\/D. In that case the Van Cittert-Zernike relation needs to be ”weighted”
with the telescope element (single dish) transfer function H (). For a circular dish antenna
H (Q) is the Airy brightness function, well known from the diffraction of a circular aperture
and detailed in a previous section. The Van Cittert-Zernike relations now become:

() = // 1(0) H ($)e =22 a6 (10.60)

I(Q)H(ﬁ):ﬂ//_ P (7)o 28 g (10.61)

The field of view scales with \/D, e.g. if A\ decreases the synthesis resolution improves but
the field of view reduces proportionally!

So, in aperture synthesis the incoming beams from antenna dish 1 and antenna dish 2 are
fed into a correlator (multiplier) that produces as output the product Ej(¢)Ej(t). This
output is subsequently fed into an integrator/averager that produces the expectation value
E {El (t)E;(t)} = I''(7). By applying the Fourier transform given in (10.61), and correcting
for the beam profile of the single dish H($), the source brightness distribution I(€}) can be
reconstructed.

Important: Indirect imaging with an aperture synthesis system is limited to measuring
image details within the single pizel defined by the beam profile of an individual telescope
element, i.e. a single dish!

10.4.1 Quasi-monochromatic point source: spatial response function (PSF)
and optical tranfer function (OTF) of a multi-element interferome-
ter

The pupil function of a linear array comprising IV circular apertures with diameter d, aligned
along a baseline direction b (unit vector) and equally spaced at a distance |s] = b- § can be

written as:
)

0 - [1(5) +n (3D} -n 3
enfieoon D) - Bl D) o

Applying the shift and scaling theorems from Fourier theory, i.e. if f(z) < F(s) then fla(z —
b)] « (727 /a) F(s/a), we find for the amplitude of the diffracted field:

> | wy

>/|°u

a0 = (%) Ew(d/A)Z] l%] . [1 b o | (i)
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Figure 10.12: PSF of a 10-element interferometer with circular apertures in pseudo-color as
a function of the 2D-position vector 4 (A-invariant display).

L (et

7 N— ~ n

The sum of the geometric series of N complex exponentials, accomodating the accumulating
phase shifts introduced by the addition of each subsequent telescope element equals:

N-1 —iN(270-5,
Z (G—L(QTI'O_‘;/A)>7L _ e N (2 _‘0 /A) — 1
= o—i(2m0-3/0) _ 1

CiN(2rd-3): —iN(2m0-5/2\) _ iN(2r0-5/2) : 7.z
e N(2 ﬁ0 /2)) (e ( /22) il / )> _ miN— 1w/ sin N (w8 - 5/)\)
o—i(2m0-5/2)) (e_i(zﬁo“.;/zx) _ ei(27r5~§/2A)) sin(m - 5/\)

](10.64)

The PSF fO_I" the diﬁf’racted intensity distribution follows from the relation
PSF = a(|6]) - a*(|6]):

PSF = (%)2 Ew (OZ/A)Z’}2 {2J1|gf|)]28ii§(]g;£;” with @=nfd/x  (10.65)
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Figure 10.13: Magnification of the central part of figure 10.12, clearly showing the locations
of the subsidiary maxima and minima.

For N =1, we recover the Airy brightness function for a single circular aperture, for N =2
(Michelson) we have sin? N (@ - §/d)/ sin(@ - §/d) = [2sin(@ - §/d) cos(i - §/d)]* /
sin?(i - §/d) = 4cos?(i - §/d), commensurate with expression (10.38).
For N apertures, maximum constructive interference occurs for sin N (76 - §/\)/
sin(rf - §/A) = N, that is when:
H—AS =n(=0,+£1,42,...) — 6] = m?(?%qb (10.66)

These so-called principal mazima are apparently found at the same |§|—locati0ns, regardless
of the value of N > 2.
Minima, of zero flux density, exist whenever sin N (76 - §/))/sin(76 - §/X) = 0, i.e. for:

0.5 L1, 2,3 N1 N+L
) N NN N N
- nA
= 0] = -2 for m=41,42,... but EN (k=0,41,+2,... (10.67
|| N§6|COS¢’ Or n b b u n# ( ) ) ) ( )

with cos ¢ the angle between 6 and the baseline vector 3.

Between consecutive principal maxima there will therefore be N-1 minima. Since between
each pair of minima there will have to be a subsidiary maximum, i.e. a total of N-2
subsidiary maxima between consecutive principal maxima. The first two terms in the
expression for the PSF give the normalisation for |§ | = 0. The other terms represent a
corrugated 2-dimensional Airy brightness distribution, intensity-modulated along the direction
of the baseline vector § with a periodicity (Af)s = A/|3] of narrow bright principal maxima
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Figure 10.14: Cross-section of the central part of the PSF for a 10-element interferometer,
delineating the brightness profiles of the principal mazima and the subsidiary mazima and
minima.

and with a periodicity (Af)ns = A/(N]5]) of narrow weak subsidiary maxima, interleaved
with zero-intensity minima.

The corrugated 2-dimensional Airy brightness distribution for N = 10, yet again for d = 25
meters and |5] = 144 meters, is displayed (A-invariant) in pseudo-color code as a function of
the 2D-position vector « in figure 10.12. Also shown, in figure 10.13, is a magnification of
the central part of the PSF that more clearly shows the interleaved subsidiary maxima and
minima. A cross-section for u, = 0 of the central part of the interferogram, delineating the
profiles of the sharply peaked principal maxima and the adjacent series of subsidiary maxima
and minima, is presented in figure 10.14.

The OTF for an array of N circular apertures can be obtained from the autocorrelation of the
pupil function given in expression (10.62):

v = (3) | S (o)) - [ Suf(n D))

n=0
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2 N—-1N-—

< ) nZOm lAnm C, /N (10.68)

0

in which A,,,, represents an element of the Nx N autocorrelation matrix A, that is given by:

—

A€ = [ [ ™a (= DG (C=Come ) o

Values A, # 0 are given by Chinese-hat functions as derived for a single circular aperture
in Chapter 7 of the OAF1 course. However in the multi aperture case here, we have a series
of principal maxima in the H /\(5 ,§/A) plane ( = the uv-plane representing 2-dimensional
frequency(Fourier) space) at spatial frequency values:

Gnaz = 5—k-§ with k=n—m=0,41,42,...,+(N — 2),£(N — 1) (10.70)

Hence we can replace A,,, by Ay, where the single index k refers to the diagonals of the
autocorrelation matrix A: k = 0 refers to the main diagonal, k¥ = 41 to the two diagonals
contiguous to the main diagonal and so on. The analytical expression for the diagonal terms
Ay can now be computed in the same way as for a single circular aperture, however in this

case we need vector notation:

—

S
(—k- 5 )10.71)

—

- S

(—k-5

—

- S

A
Zle—k-2
dC A

—

C_

s
E-2
A

1
A A %\ ? A
_(Z 1— (2 o=
) Gle-x 3 (- Gle-30) ]G
which we rewrite in terms of Chinese-hat functions C’k(f —k-§/A) normalised to unit aperture

area.:

1 /d\? . = .
Ay = g (X) Co(@— k- 5/\) (10.72)
The sum over all elements of matrix A can now be obtained from:
N-1N-1 N-1 o
Z Z Anm = Asa Z (N - |k|)ck(C —k- §/>‘) (1073)
n=0 m=0 k;:—(N—l)
N-1 N-1
Sum check: Z (N—|k))=N+2 Z (N — k)
k=—(N-1) k=1

:N+%(N—1)[2(2N—2)—2(N—2)]:N+N2—N:N2,

compliant with the required total number of matrix elements! The quantity A, = iw(d/ 2)?

represents the geometrical area of a single telescope element.
Hence, we arrive at the following expression for the OTF of the array:

— (VK]

2
Hy\(C,N5/\) = <%> NA, Y Tck(g k-3/\) with (10.74)
k=—(N—1)

)10.75)

> »y




The geometrical term N Ay, reflects the total geometrical collecting area of the telescope array
(N times the area of a single aperture Ag,) and the term (\/R)? accomodates the attenuation
due to the spherical expansion of the wave field.

The OTF for the spatial frequency throughput of the aperture array is described by a lin-
ear array of discrete spatial frequency domains in the uv-plane, characterised by Chinese-hat
functions centered at zero frequency and at multiples of the baseline vector /A, that specifies
the equidistance (magnitude and direction) between adjacent apertures. The peak transfer
declines linearly with increasing mutual separation between aperture elements relative to the
zero-frequency response, i.e. proportional to (N — |k|)/N for spatial frequencies centered
around k& - §/X. This can be easily explained by considering the monotonously decreasing
number of aperture elements, and hence the associated array collecting power, involved at
larger baseline values. For the maximum available baseline (N — 1)§/A this throughput re-
duction amounts to 1/N.

Intermezzo: Verify that Hy(C, N§/\) < PSF(N-apertures)!!

Proof: Application of the shift theorem yields for the Fourier transform of the single-aperture-
weighted (Asq = 1m(d/ A)?) Chinese-hat function at baseline position k - §/A the following
expression for its FT:

AN CGC k) @ [ (d/A)Q]Q FJI(WD]Z KT (10.76)

||

Putting z = 270 - §/\, the Fourier transform of (10.74) can be expressed as:

er [ &) = (3) [fraor] [2LUD

N-1 N-1 ) N-1 ) N-1 )
-lN <1+ PR e”“> - (Z ke 4+ " ke'“)] (10.77)
k=1 k=1 k=0 k=0

2

The first two sums of (10.77)involve simple geometric series and can be easily calculated, i.e.:
el (e"(Nfl)QD — 1) A(N=3)z _ jix/2

—1
ik
= - = d:
2:: ¢ E— 2 sin (/2) o

N
k

—_—

N— ' el (e—i(N—l)fv _ 1) e—iN=3)z _ ,—iz/2
Z e—zkx _ — — _ ( )
k=1

2isin (z/2)

Hence, after some rearrangement of the complex exponentials, this results in a real function:

N—1 N—1 .

~ - 2N —1 2

N <1+ Z ezkm + Z ezkw) — NSIH[( i ;(ZE/ )] (1078)
= = sin (z/2)

The third and the fourth sum in equation (10.77) involve a combination of an arithmetic

and a geometric series (a so-called arithmetico-geometric series). These sums can be simply

derived by differentation of the expression for the sum of the geometric series, resulting in:

N—1 o .
) NelN=Dz _ (N _1)eiNe _ 1
Z ketkr = ¢ - (2 e and:
= 4sin”(z/2)
NXEI " ik Ne—i(N—l)x - (N - 1) e—iNT _ 1
e = .
prr 4sin?(x/2)
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Straightforward recombination of the complex exponentials again results in a (trigonometric)
real function:

N-1 N-1
Z heibT | Z fe—ika _ Ncos(N — 1)z '—Z(N— 1)cosNz — 1 (10.79)
P P 2sin®(z/2)

Combining expressions (10.78) and (10.79), we arrive at :

N-1 N-1 ) N-1 ) N-1 )
[N (1 + Z ezkm + Z ezkw) o (Z kezkm + Z kezkw)
k=1 k=1 k=0 k=0

_ 2Nsin(z/2)sin(N — )z — Ncos(N — 1)z + (N —1)cos Nz + 1 _

2sin?(z/2)
B Nsinzsin Nz + Ncoszcos N — cosNx — NcosxzcosNx — NsinzsinNx + 1 B
B 2sin?(z/2) B

_ 1—cosNz  2sin’(Nz/2)
© 2sin®(z/2)  2sin®(z/2)

(10.80)

Substituting = = 270 - 5/ = 2( - §/d), yields:

FT [Hy(C N5/ = (%)2 Ew(d/A)Q]Q [2J1|gf|)]25i:;i£\(f§;gl) QED. (10.81)

Note: The modulation term sin? N (% - 5/d)/sin?(i - 5/d) can be simplified for low N-values:

=1 for N=1
= 4cos®(ii- 5/d) for N=2
= [2cos2(@ - §/d) +1]* for N=3
= 8cos?2(w - 5/d) - [1 + cos 2(ii - §/d)] for N=4 (10.82)

End Intermezzo

10.4.2 Earth Rotation Aperture Synthesis (ERAS)

By employing the rotation of the earth, the baseline vectors k - §/\ of the linear N-element
interferometer array, as defined in the previous section, will scan the YZ-plane displayed in
figure (10.10) in case the X-axis is lined up with the North polar axis, i.e. in this particular
geometry the X-coordinate of the baseline vectors is zero. The principal maxima or 'grating
lobes’ in the PSF of a multiple aperture array, as computed in the preceding section, will now
manifest themselves as concentric annuli around a central source peak at angular distances
k-A\/|§|. If the circular scans in the YZ-plane are too widely spaced, i.e. if |§] is larger than the
single dish diameter, the (2-dimensional) Nyquist criterion is not respected and undersampling
of the spatial frequency uv-plane (=YZ-plane) occurs. Consequently, the grating lobes will
show up within the field of view defined by the single-dish beam profile. This can be avoided
by decreasing the sampling distance |§|. In the following section we shall now demonstrate
these notions with the concrete configuration of the Westerbork Synthesis Radio Telescope.
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Figure 10.15: Configuration of the Westerbork Synthesis Radio Telescope.

10.4.3 The Westerbork Synthesis Radio Telescope (WSRT)

The WSRT consists of 14 parabolic antenna’s, with single dish diameters D of 25 meter. They
are accurately lined up along the East-West direction with an overall length of ~ 2750 meter.
Ten antenna’s (numbers 0 thru 9) are fixed with a mutual distance of 144 meter. The other
four antenna’s (A thru D) can be moved collectively with respect to the fixed array, without
altering their mutual distance, i.e. the variable distance between antenna’s 9 and A can be
preselected as a suitable baseline increment |§| = AL (Figure 10.15). These 14 antenna’s
comprise 40 simultaneously operating interferometers. Employing the rotation of the earth,
the full antenna array is rotated in a plane containing Westerbork perpendicular to the rotation
axis of the earth. With reference to figure (10.10) this implies that in this geometry we are
limited to sources near the North polar axis, all single dishes are thus pointed in that direction.
In practise, the standard distance between antenna’s 9 and A equals 72 meters. Consequently,
after half a rotation of the earth the YZ-plane is covered with 38 concentric semi-circles with
radii ranging from L,;, = 72 meters to Lo, = 2736 meters, with increments of AL = 72
meters. The WSRT-correlators integrate and average over 10 seconds, this implies sampling
of the concentric semi-circles every 1/24 degrees. After 12 hours, half the YZ-plane has been
covered. The other half need not be covered, it can be found by mirroring the first half since
I(€)) is a real function.

The brightness distribution [ (ﬁ) can now be reconstructed by Fourier inversion according
to expression (10.44). Since we have only obtained samples of the spatial coherence function
['(7), the integral of expression (10.44) is replaced by a sum. Moreover, one normally applies
in addition a weighting function to get a considerable reduction of the side lobes, this goes
slightly at the expense of the ultimate angular resolution. This is expressed in terms of a
degradation factor o > 1. The simplest form of such a weighting function is a triangular
shaped, circular symmetric, function (i.e. a cone), the attenuation effect on the side lobes is
called apodisation. Leaving any constants aside for the moment , we obtain [ (Q)

27 Q.7

I(Q) = > w(@) D (F)e™—x (10.83)
k

with w(7y) the weighting (apodisation) function.

Expression (10.83) yields a radio map on a discrete grid in ﬁ—space. The cell size of this
grid (pitch) is chosen in such a way that oversampling of the spatial resolution of the array is
achieved, so that contour plots can be constructed.

Note: The reconstructed I (ﬁ) needs to be corrected for the single dish response function
H($), see equation (10.61).

If we consider half an earth rotation, the sum in (10.83) involves ~ 165.000 numbers (i.e.
38 semi-circles, 12x60x6 correlator samples/semi-circle). This sum will have to be taken for
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Figure 10.16: A reconstructed “dirty” radio map showing central source peaks and grating
lobes of increasing order. Credit Westerbork Radio Observatory.

roughly the same number of image points in Q—space. This task is accomplished by using the
Fast Fourier Transform algorithm.

The Point Spread Function (PSF):

Taking a point source S as the quasi monochromatic radiation source, the spatial frequency
response function of the rotated interferometer array in the uv-plane can be obtained explic-
itly from expression (10.74) for the OTF by implementing the geometry of concentric scans.
In that case, owing to the circular symmetry, the vectorial expression H )\(5 ,N§/\) can be
replaced by a, radially symmetric, scalar expression Hy(p, NAL/)), with the scalar p the (-
normalised) spatial frequency variable (= |5 |) and AL the baseline increment of the array
(= |&]). Although an exact expression for the scalar function Hy(p, NAL/)) would involve
integration along one coordinate of the two-dimensional Chinese-hat function, a straightfor-
ward one-dimensional cross-section constitutes an adequate approximation. Hence we can

write:
H NAL/MN) = [ =) NAg, E ~ — 2 Cirp—Fk-AL/)\ 10.84
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The PSF derives from the Fourier transform of Hy(p, NAL/X).
outlined in the intermezzo above, we arrive at:

Following the approach

(10.85)

R

2.J, (u)]2 sin? N (uAL/D)

_ (A ‘M 2]?
PSFpras = <_> hﬁ(d/k) ] [ sin?(uAL/D)
where we have again utilised the reduced angular variable u = w@D/\, 0 represents the,
radially symmetric, diffraction angle.
Evaluation of expression (10.85) reveals two main image components:
A Central Peak:
This distribution is rather similar to the Airy brightness pattern, with a typical breadth, i.e.
spatial resolution:

A/

radians

= 10.86
2Lmax ( )

with 21,4, the maximum diameter of the array in the YZ-plane. In the derivation of (10.85),
no weighting function was applied. If a weighting function is applied for efficient apodisation,
expression (10.86) needs to be multiplied by a degradation factor « =1 — 1.5 to accomodate
the loss in ultimate angular resolution. Moreover, moving outward, the sidelobes in (10.85)
will progressively be reduced depending on the particular choice of the weighting function.
Concentric Grating Lobes:

The angular distances of these annuli from the central peak follow from the location of the
principal mazima given by the modulation term sin? N(uAL/D)/sin?(u/AL/D) in expression
(10.85). For an N-element array with increment AL, these angular positions are given by:

A A A

ngating - E,QE, ..... 5 (N - 1)—

10.
= (10.87)

A typical source field containing these grating lobes is shown in figure (10.16).

It is clear from this figure that severe undersampling of the YZ-plane has occurred since
the grating lobes are well within the field of view. For the WSRT, one way to remedy these
imperfections in the PSF is by decreasing the distance between antenna’s 9 and A during the
second half rotation of the earth. Combined with the first half rotation, a 36 meter increment
coverage is achieved at the expense of doubling the observation time from 12 to 24 hours.
In the same way, combining four half rotations in 48 hours, we can increase the coverage to
18 meter increments. Since the single dish diameter D equals 25 meter, no empty space is
now left in the YZ-plane, the undersampling is corrected and the grating lobes have been
moved outside the field of view defined by the single dish beam profile. This is summarized
in the following tables that show exposure times, maximum baselines and increments, and at
four different radio wavelengths single dish fields of view, central peak angular resolutions for
«a = 1.5, and angular distances of the grating lobes.

Exposure(hours) | a (meter) | Ly, (meter) | AL (meter) | Liyq. (meter)
1x12 72 72 72 2736
2x12 36,72 36 36 2736
4x12 36,54,72,90 36 18 2754
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Figure 10.17: Position of the concentric grating rings in the PSF for various sampling densities
of the wv-plane. FOV: —\/D < 0, 4 < A/D (=1 < uy y < m). Upper left: AL/D = 144/25,
upper right: AL/D = 72/25, lower left: AL/D = 36/25, lower right: AL/D = 18/25.
The insert in the lower right panel shows a blow-up of the central peak image, displaying the
circular subsidiary mazima and minima.

X (cm) 6 | 21 | 49 | 92
£ (MHz) 5000 | 1420 | 612 | 326
Single dish pixel A/D (arcsec) 500 | 1800 | 4200 | 7600

3 11.5 | 27 50

arcsec) | 172 | 7600 | 1405 | 2640
arcsec) | 344 | 1205 | 2810 | 5270
arcsec) | 688 | 2410 | 5620 | 10540

Resolution a\/(2Lpe,) (arcsec
Grating lobes A\/(AL = 72 m)
Grating lobes A\/(AL = 36 m)
Grating lobes A/(AL = 18 m)

NN N —
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Figure 10.18: Applying the CLEAN method for improving dirty radio maps. This is a radio
map taken at X = 50 cm, with o AL = 36 meter increment. Left panel before CLEAN, right
panel after CLEAN. Credit Westerbork Radio Observatory.

As is clear from these tables, the grating lobes can only be moved outside the single dish pixel
if the empty spaces between the samplings are filled in, the table shows that this is obviously
the case for AL = 18 m: for example the first order grating lobe at 6 centimeters is situated
at an angular distance of 688 arcseconds from the centre, whereas a single dish pixel A\/D
equals 500 arcseconds.

Figure (10.17) stipulates the outward movement of the grating lobes for a WSRT-type config-
uration by taking D = 25 meter and by reducing the baseline increment values from AL=144
to 72, 36 and 18 meters respectively.

The problem of incomplete coverage of the YZ-plane is that the values of the coherence func-
tion f‘(f’) are set to zero in the empty spaces, which will certainly give an erroneous result.
This can be circumvented by employing interpolation between the sampling circles based on
certain assumptions regarding the complexity (or rather simplicity) of the brightness distribu-
tion of the sky region observed. Requirement is that the reconstructed (contour) map always
remains consistent with the measurements at the grid points! Two mathematical techniques
are often applied to get rid of the grating lobes: the CLEAN and MEM (Maximum Entropy
Method) techniques. Obviously this is potentially much more efficient than elongating the
observation times by a factor two or four, as was done in the above table. We shall not discuss
these particular algorithms in any detail here, however the MEM technique will, in a more
general fashion, be treated later on in this course. The improvement that can be achieved
by applying the CLEAN method to a dirty radio map is displayed in figure (10.18), the left
panel shows a dirty radio map at a wavelength of 50 cm, the right panel shows the ”cleaned”
map after applying the CLEAN process.

10.4.4 Maximum allowable bandwidth of a quasi-monochromatic source

As was already stated, the coherence length of the radiation source needs to be larger than the
maximum path length difference at the longest baseline present in the interferometer array.
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This imposes a maximum frequency bandwidth for the observation of the radiation source,
which is disadvantageous since the noise in the image decreases with \/AvT,,,. The largest
angle of incidence equals half the field of view, i.e. A/2D, with D the single dish diameter.
At this angle, the coherence length compliant with the largest baseline needs to obey:

A
L — Lz 10.
coh > 2D ( 0 88)

This translates in the following condition for the allowable frequency bandwidth:

Av 2D
— K

o Laz

(10.89)

In the case of the WSRT5 the ratio 2D/ Ly, = 1/50. At a wavelength of 21 centimeters (=~
1400 MHz), this yields Av <« 28 MHz. This corresponds to a coherence length of more than
10 meters. In practise a value of Av ~ 10 MHz is chosen, which corresponds to a coherence
length of about 30 meters.

If one wishes to increase the bandwidth in order to improve sensitivity, than division in
frequency subbands is required. For instance, if one observes at 21 centimeters and Av = 80
MHz is required, this bandwidth is subdivided into eight 10 MHz subbands by filters. The
individual subband maps are subsequently scaled (with \) and added. This then yields the
required signal to noise ratio.

10.4.5 The general case: arbitrary baselines and a field of view in arbitrary
direction

In deriving the Van Cittert-Zernike relations, we took the baseline vector 7(Y, Z) in a plane
perpendicular to the vector pointing at the centre of the radiation source. In the WSRT case
we were, therefore, limited to consider a field of view near the north polar direction.
Consider now an extended source in a plane o in an arbitrary direction, an observation plane X
parallel to o, the centre of the radiation source is located on the X-axis, which is perpendicular
to both planes. We designate the intersection point of the X-axis with the Y-plane as the
position of antenna 1 (for convenience, as we did before) and position antenna 2 at arbitrary
coordinates (X,Y, Z). This defines an arbitrary baseline vector 7(X,Y, Z). During the earth
rotation the antenna beams are kept pointed at the source direction Q, i.e. this vector does not
move, however the tip of the baseline vector 7(X,Y, Z) describes a trajectory X (t),Y (t), Z(t)
in space. Consider again radiation incident on the Y-plane parallel to the X-axis, like in the
case of the original Van Cittert-Zernike derivation. In that case the path difference at positions
1 and 2 was zero, since the baseline was located in the Y, Z-plane, now the path difference is
given by X (). To restore maximum coherence between positions 1 and 2, this path difference
can be compensated by delaying the signal of antenna 2 by X(¢)/¢, in other words radiation
from direction X arrives at the same time at both inputs of the correlator. Taking the centre
of the source as the zero reference point for the source direction vector in the X, Y, Z reference
frame, we can select an infinitesimal source element in the direction QO(Q x0, 2yvo0, Qz0) (unit
vector) = Iyd (ﬁ — ﬁg). The path difference at the input of the correlator is the projection
of the baseline on that unit vector under subtraction of the compensation X (¢):

7.0 — X = [QyoY + Q207 + (Qx0 — 1) X] (10.90)

If the extent of the radiation source (or the field of view defined by a single antenna beam)
is sufficiently small, the value of the direction cosine Qxp ~ 1, i.e. (2x9 — 1)X < A In
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that case the difference in path length, like in the case of the original VanCittert-Zernike
derivation, equals the scalar product of two vectors in the Y Z-plane: the path difference
equals ~ Fp.ﬁg = OyoY + Qz0Z, with 7, the projection of the baseline vector on the Y Z-
plane and Qf] the projection of the unit direction vector on the Y Z-plane. If T (Q) represents
the brightness distribution over the sky, the VanCittert-Zernike relation for obtaining the
coherence function is now given by:

() = / / To(3)e2m /g (10.91)

with 7, the projected baseline!

Conclusion: Arbitrary baselines do not change the aperture synthesis technique, except that
the 3D baselines are projected on the observation plane > and become 2D.

Note: the pathlength difference X (¢) changes continually during the rotation of the earth
and, hence, needs continues electronic compensation with an accuracy of a small fraction
of the wavelength A. In practise, for the WSRT, this is accomplished in two steps: coarse
compensation with a delay line and subsequent fine tuning with the aid of an electronic phase
rotator.

At the beginning of the description of earth rotation aperture synthesis, we considered the
radiation source to be located in the direction of the rotation axis. Suppose now that the
extended radiation source (or the single telescope field of view) is located along a direction
vector that makes an angle ¢ with the rotation axis of the earth. This is then the direction
of the X-axis, perpendicular to this axis is the Y Z-plane. The East-West oriented WSRT
baselines physically rotate in a plane perpendicular to the earth axis, producing concentric
circles as described earlier. These concentric circles now need to be projected on the Y Z-
plane, i.e. the observation plane Y perpendicular to the viewing direction of the centre of the
source (or the centre of the field of view). The circles change into ellipses and the coherence
function is now sampled on ellipses, rather then on circles. The major axes of these ellipses
remain equal to the physical length of the WSRT baselines, the minor axes are shortened by
cos ¢g. This causes the point spread function (PSF) to become elliptical as well, the angular
resolution therefore reduces with the lowering of the declination [(7/2) — ¢p]. As a result,
celestial directions along the declination are subject to a broadening of the central peak of

the PSF according to:

al

Apart from the central peak, the grating lobes are scaled accordingly, this can be clearly seen
in figures (10.16) and (10.18). For the WSRT the most extreme case of baseline shortening
would occur with a source in the equatorial plane (declination 0), no resolution would be left
in one direction. To circumvent this problem, baselines need to contain always North-South
components. This is for example the case with the US VLA (Very Large Array) aperture
synthesis telescope.
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Chapter 11

Radiation sensing: a selection

11.1 General

In modern astrophysics a host of radiation sensors is employed to cover the full extent of
the electromagnetic spectrum, the different species in cosmic-ray particle beams and the
interaction products of cosmic neutrino capture. In this course it is not possible, nor desirable,
to strive for any degree of completeness on this subject. Rather, a few specific sensor types have
been selected since they feature very prominently in state of the art telescope systems used in
present day astrophysical research. No attempt is made to describe these sensor types in any
technical depth, nor will the, often very complex, electronic processing and data management
chain be described. The focus will be entirely on a basic understanding of their working
principle and physical characteristics, so as to allow a proper insight in their applicability and
limitations. In the following sections, a treatment is given of three generically largely different
sensor types:

e heterodyne receivers for coherent detection in the radio, microwave and far-infrared
domain

e photoconductors for sensing primarily in the visible and infrared bands

e charge coupled devices (CCD) for sensing in the optical, UV and X-ray domain.

11.2 Heterodyne detection

In radio and microwave astronomy, the signal power is often a very small fraction of the system
noise. Hence, large values of the product Ty - Av are required to obtain the proper value
of the limiting sensitivity for the detection of a weak source. As a consequence, the receivers
employed must be very stable and well calibrated. Stable amplifiers are available at relatively
low radio frequencies (i.e. up to 10 GHz), but large amplification factors and stability do
become a problem at high frequencies. In order to overcome this problem, extensive use is
made in radio and sub-millimeter applications of heterodyne techniques.

In this technique, the incoming radio signal is mixed with a reference signal at a frequency
relatively close to the average signal frequency vs. This reference signal at frequency vy is
produced by a so-called local oscillator with high frequency stability, i.e. Ay, is almost a -
function. In that case the reference signal has a very large coherence time and may therefore
be regarded as coherent in the mixing process. Both signals are combined and fed to a non-
linear detection element, the mixer element, which has the effect to produce signal power at
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both sum v, + 1 and difference | vy — v;| frequencies (recall: vy = 5= 4 (270t + ¢(t))). This
can be quantitatively described by considering the following processing sequence. The wave

Nonlinear|
Detection
Element

Intermed.
Frequency
Filter

Low-pass Phasor
Filter Analyser

Av Ve Non-linear |y -v,|
Element )
[ B >
Heterodyne detection B |
v =100 -1000 GHz " '
A=1mm- 100 pm g
_)i ::‘_Av‘
5 o
i T |
diode I -V SIST-V T=1
/
b 2Av, v
U
V,=2A/q -
e f; v

Figure 11.1: Super heterodyne processing chain.

signal received at the focus of the telescope is first passed through a horn and a resonance
cavity, which select the polarisation direction and the frequency bandwidth Av. Subsequently
the signal of the (tunable) local oscillator, at frequency v, is coupled (superimposed) to the
high frequency source signal vs through a so-called diplexer (or coupler) and funneled onto the
non-linear mixer element. As discussed previously, a thermal source signal can be expressed

as
E,(t) =| Eyo(t)] -¢'Cr7st+0(1) (11.1)

Similarly, the signal of the local oscillator can be expressed as
By(t) = Eyo(t) - /™Y (11.2)

in which Elyo(t) represents the phasor of the local oscillator signal. Regarding the local
oscillator as a coherent signal source, this phasor can be written as

Epo(t) =| Eipl -¢™ (11.3)

Hence: . . .
Ey(t) =| Ey| €'t (11.4)

Since the source signal concerns one component of polarization, the wave signal at the non-
linear mixer element can be written as

En(t) =| Eso(t)] - cos(2nmst + p(t))+ | Ero| - cos(2mut + ) (11.5)
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Detection by the mixer element causes a frequency conversion through the occurrence of
a product component arising from the non-linear response. Assuming a non-linear mixer
response proportional to Ef(t), a product component 2 | Eso(t) | - | Eyg | - cos(2mvst +
@(t)) - cos(2myyt + 1) is formed. Applying the trigonometric relation cos a cos f = %[cos(a +
B) + cos(a — B)] two frequency components can be distinguished:

e one centered at 7y + v |Esyo(t)| . |El,0| ccos(2m (s + 1))t + P(t) + 1)

e one centered at |v5 — v|: | Eso(t)] - | Ero| - cos(2m (s — 1)t + p(t) + )

- Junction material || Vian [MV] | Umax [GHZ]
! p— o] Nb/AI-AL,O./Nb 2.9 1400
— rever | PR Nb/ALAIN/NbTiN 35 1700
supercondicior NbTiN/MgQ/NbTiN 5.2 2500
— o NbN /AIN /NbN 5.4 2600
SIS'junCtion bias voltage Vg [mv1
b) 400
I T=0
s < 300} Q= Rospgu2 MV) /Ry
=
-
- £ 200}
o
, ©) S
© 100}
7]
T
=]
D 1
0 2 4 6
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Figure 11.2: Characteristics of SIS junctions.

The latter expression is linearly proportional to the amplitude of the source signal |ES,0(t) |
and possesses all the characteristics of the original signal, but now centers at a much lower
difference frequency |75 — ;| (except for the phase shift ¢;). In the sub-millimeter application
with vy = 1 THz, |vs—1| is of the order 10 GHz. Remember that the bandwidth of the source
signal Av; is contained in the time dependent phase factor ¢(t) and, consequently, the mizer
element should have adequate wide frequency response to cover the complete bandwidth.
The converted signal at the difference or intermediate frequency (IF) can be selected by
employing an intermediate frequency filter (IFF) and can subsequently be amplified by a stable
low noise IF amplifier (A). Obviously the mixer element should have the lowest possible noise
temperature, near-quantum limited operation near 1000 GHz has been achieved (see further).
By employing a tunable local oscillator the average frequency v of the source signal can
be shifted while maintaining a fixed 7y and associated filter circuitry, i.e.:

Vs =1 (tunable) +Urr (flxed) (116)

The IF signal is finally fed into a non-linear detection element (D) which, after low-pass
filtering (LPF), generates the frequency spectrum associated with the signal phasor for one
component of polarization | Eyo(t)| cos¢(t), i.e. the envelope function of the high frequen-
cy source signal Es(t). This frequency spectrum represents the spectral distribution of the
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Figure 11.3: In-flight noise temperatures achieved in several frequency channels of the HIFI-
Wide Band Spectrometer on board the Herschel Space Observatory.

radio signal centered at s over the bandwidth Av,. This signal can be fed into a frequency
analyser (spectrometer) for spectral analysis. Figure (11.1) shows the signal processing chain
and various stages in the detection process. Panel A displays the high frequency thermal
signal incident on the telescope (antenna). Panel B shows the output of the resonance cav-
ity into the diplexer, limited to the bandwidth Avs. Panel C shows the envelope function
superimposed on the IF-carrier signal vrp =|vs — 1|, after frequency conversion by the non-
linear mixing element. In panel D this signal is fed through the non-linear detection element
(normally a quadratic response) after which the low frequency phasor signal can be filtered
out (panel E). Heterodyne detection at sub-millimeter and infrared wavelengths is a powerful
spectroscopic technique. In this case the mixer element consists of a superconductive tunnel
junction, comprising two superconducting electrodes separated by a thin oxide barrier (see
figure (11.2). Because of an energy gap 2A in the material of the superconducting electrodes,
the current-voltage characteristics (the so-called I-V diagram) of this Superconductor Insu-
lator Superconductor (SIS) junction is highly non-linear. SIS-mixers are the most sensitive
heterodyne mixers in the 0.2-1.2 THz frequency range, where the upper frequency is deter-
mined by the energy gap 2A of practical superconducting materials (e.g. Niobium (Nb) and
Niobium-Titanium (NbTi)). The frequency down-conversion process can be achieved with
near quantum-limited noise performance. An example is shown in figure (11.3) that shows
the noise temperatures which were obtained in a number of high frequency channels of the
Wide Band Spectrograph (WBS) in the HIFI-instrument on board the Herschel Space Obser-
vatory. Up to 700 GHz a noise temperature of a few times (= 5) the quantum limit has been
obtained, the mixer operates near the quantum limit, but input losses and IF amplifier noise
decreases the overall performance. Above 1.2 THz hot-electron bolometer mixers (HEBM)
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are used which are not limited by the energy bandgap of the superconductor, since they do
not operate on the individual photon energy but on the total absorbed power. The physical
foundation of bolometer operation will be treated in a later section.

Note: The factor |E170 | in the product component can be made large so that the signal to
noise ratio can be largely improved with respect to the internal noise sources in the receiver
chain. This assumes of course that |El,0| is ultra stable and, also, that the quantum noise of
the local oscillator is still negligible.

11.3 Frequency limited noise in the thermal limit: signal to
noise ratio and limiting sensitivity

horne Direct detection horne Heterodyne detection

(\( wave pipe E <\ wave pipe ?
| LO |
LO

Quadratic detection element  E?(t) or |E(t)]

( Y

Figure 11.4: Schematic view of a radio receiver with the receiving horne, which selects the
frequency vs and the frequency bandwidth Avs, the wave pipe, and the ‘quadratic’ detection
element (left). By mizing the radio signal with that of a local oscillator (LO), the carrier
frequency can be shifted to much lower frequencies without any information loss (heterodyne
detection), suitable for electronic processing (right).

The average spectral noise power in the thermal limit (hv < kT') for one degree of polariza-
tion, equals £7T'. This is the situation which prevails in radio-, microwave- and submillimeter
receivers and hence gives rise to a description of signals and noise with the aid of characteris-
tic temperatures, e.g. source temperature 75 and noise temperature 7},. The one-sided power
spectral density S(v) = P(v) = kT Watt Hz~! is constant as a function of frequency and, as
a consequence, is termed white noise.

In practice, due to the finite frequency response of any receiver system, this will be frequency
limited. Hence we can express the double-sided power spectral density for a thermal source
for one degree of polarization as:

Su(v) = %an (%) with e < %T (11.7)
where v, constitutes the cut-off frequency of the receiver system under consideration, i.e. the
total energy contained in the power spectrum remains finite, as it should be for any physical
system.

Continuing now with the detection of radio signals, we wish to consider the signal-to-noise
ratio. As discussed previously,the linearly polarized signal displayed in figure (8.7) can math-
ematically be expressed by the real function:

E(t) = Ey(t) cos(2mvt + ¢(t)) (11.8)
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The amplitude w(t) = Ey(t) of the quasi-monochromatic wave is a wide-sense stationary
Gaussian random time function of zero mean. Moreover the stochastic process is assumed
to be mean- and correlation-ergodic, i.e. for an arbitrary real stochastic variable w(t) its
expectation value at time t, E {w(t)}, can be interchanged with its time average.
Detection of such a radio signal requires, like in the case of miring, a non-linear operation
like 4(t) = |w(t)| or ¢(t) = w?(t), to extract the power present in the signal. We shall
consider here the case of quadratic detection, i.e. ¢(t) = w?(t), since this is mathematically
straightforward in contrast to absolute-value transformations.

If w(t) can be described as a stationary random process with a normally distributed
amplitude around zero mean, the probability density function is given by:

flw) = ﬁ“’” 0 (= 0) (11.9)

and the measuring process is schematically indicated by
w(t) — transformation — 1 (t) = w?(t) (11.10)

For the transformation () = w?(t), with 02 = R,,(0), we can write the probability density
of ¢ as
Y

]_ _
27 Ry (0)9] 12 P {2Rw(0)

with U(y) the Heaviside step function. (In understanding expression (11.11), don’t forget
the transformation dw = di!). Thus, the stochastic process ¢ (t) is apparently not normally
distributed, and of course also jiy, # 0.

W) =5 |vw) (1L.11)

To derive the power spectral density of () we need to find an expression for the auto-
correlation function Ry (7) of 1(t). One can show that for a normally distributed w(t) the
autocorrelation of 4(t) = w?(t) follows from:

Ry(r) = E{p®pt+7)} =E{w’@u’(t+r)} =
E{w?()} B {w?(t+7)} + 2B {w(t)w(t + )} (11.12)

The derivation of this relation applying the theory of stochastic processes makes use of the
so-called moment-generating functions of w(t). Hence:

Ry(1) = R2,(0) + 2R}, (7) = pi, + Cy(7) (11.13)

The average (i, of 4(t) equals the variance of w(t), the autocovariance of 1) (t) equals twice the
square of the autocovariance of w(t), and the variance of v (t) is ai = 20} . The double-sided
power spectral density of ¢ (t) follows from the Wiener-Khinchin theorem:

Sa, (v) = R2,(0)8(v) + 284, (v) * Sa, (v) (11.14)

It is important to realize that in the case of quadratic detection a number of frequency
components is introduced in the case of an amplitude-modulated signal like w(t). We shall
demonstrate this, as an example, for a deterministic signal, i.e. an amplitude-modulated high
frequency carrier of the form:

z(t) = A(1 + m cosnt) cos wt (11.15)
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AM modulated signal x(t) = A(1 + m cosnt) cos wt — frequency components

A A
A7 A7
Am/4 Am/4 Am/4 Am/4
-n -0 -n to

Spectral components after quadratic detection from C2(t) =x(t)x(t + 1)?

A* m*
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Figure 11.5: Frequency components of an amplitude modulated (frequency n) carrier (frequen-
cy w) with modulation index m (upper panel). The spectral components that emerge after
quadratic detection present in the autocovariance function are shown in the lower panel. Ev-
idently the sidebands appear at twice the carrier frequency w, moreover the signal bandwidth
4n amounts to twice the original bandwidth 21).

This represents a high frequency carrier (w) the amplitude (A) of which is modulated by a
much lower frequency (7). m is called the modulation index.
The signal z(t) contains three discrete frequencies, w — 7, w, and w +n. This is easily seen by
using cos acos 8 = $[cos(a + B) + cos(a — B)].

The instantaneous intensity of this signal can be expressed as I = z2(t), and for the

average intensity we get

- 1 1
I=x2(t) = 5A2(1 + §m2) (11.16)

The equivalent of the term E {a?(¢)} E {a?(t + 7)} in expression (11.12) amounts in this case
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to a DC-term representing the square of the average intensity:

— 1 1 ,\?
I’ = A (1 + §m2> (11.17)

To arrive at the equivalent of the autocovariance term 2E? {a(t)a(t 4+ 7)} in equation (11.12),
we first have to compute the autocovariance Cy(7) of z(¢):

_ 1 1 1
Co(r) =z(t)z(t+71) = EAZ[COS wT + ZmZ cos(w + 1)1 + ZmQ cos(w — n)7] (11.18)
Subsequently:
_ 1 1
x(t)ac(t—l—7)2 = ZA4(1 + §m2 cos n7)? cos® wr (11.19)
Using the relation cos? o = %(cos 2a+ 1) this can be disentangled in various components:

- 4 2 74
x(t)x(t + 7)2 = %(1 + cos 2wT) + m A

1
[cosnT + 3 cos(2w — )T +

1 At 1
+ 3 cos(2w +n)7] + 6l [1 4 cos2nT + 3 cos(2w — 2n)T +
1
+ cos2wt + 3 cos (2w + 2n)7] (11.20)

This expression shows that the original frequencies in the power spectral density of z(t), w
and w + 7 have been transformed in the squaring process to frequency components at DC, 1,
21, 2w, 2w £ 1 and 2w + 2n. Displayed on a double-sided frequency diagram this shows twice
the original frequency bandwidth centered at DC and +2w (see figure11.6). In the case of
the stochastic signal w(t) we shall see the same characteristics in the power spectral density
of the autocovariance Cy (7).

Consider now the front-end of a receiver behind a radio antenna (telescope), see (Fig-
ure (8.7). This front-end generally contains a resonance cavity tuned at a central frequency
v = v with a bandwidth Avg. If the noise entering the receiver can be characterized by a noise
temperature T}, the double-sided power spectral density of w(t) for one degree of polarization

is given by: . N
St (v) = SKT, {H ("AVVS> +11 (”AVVS>] (11.21)
S S

This signal is then fed to a non-linear detection element, like a Schottky-diode or an induction
coil, which introduces the transformation 1 () = w?(t). Consequently, we have:

R2(0) = (02)% = (%an 70 [H <"A_y8”s> + 10 <”§y’:s>} dy) 2 = (KT,Avy)?  (11.22)

and
s - enrlo(52) ()] ) ()
= (KT,)*Av, [A (AV,/) + %A (”;Zﬂ + %A (”Zi”sﬂ (11.23)

Sa, (v) consists therefore of a component (kT Avy)?6(v), a time independent average val-
ue at zero frequency (stationary Gaussian random amplitudes) and three ’triangle-functions’
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Figure 11.6: Upper panel: Double-sided power spectral density of thermal radiation for one
degree of polarization (P = kT Watt Hz '), over a channel bandwidth Av, centered at
frequency v, incident on a non-linear detection element. Middle panel: double-sided power
spectral density at the output of the detection element. Lower panel: low frequency filtering
(cut-off ve) providing signal averaging over a time interval ATy, = 1/2v.. This time averaging
process obviously does not influence the DC-component, this is schematically indicated in the
figure by showing an exclusion of the green arrow.

centered at zero frequency and at frequencies —2v¢ and +2v,; with a basewidth of 2Avg, as
illustrated in figure 11.6. Note the correspondence in frequency shift and bandwidth with
the example involving the deterministic amplitude modulated signal above! In practice one
always has v, > Av,, in the centimeter range for example one typically has v, ~ 10'Y Hz and
Av, ~ 107 Hz. The detection of a potential radio source signal will then have to be assessed
in the context of the autocovariance of the noise signal, i.e. we need an expression for Cy (7).
This follows from the Fourier transform of the term 2 [Sg, (v) * Sq, (v)] in equation (11.23).
Applying the shift theorem and the A < sinc? transform from Fourier analysis, we get:

—27i(2vsT) + e2mi(2v5T)
2
= (KT, Avg)?(1 + cos 27 (2uv,7))sinc? T Avy (11.24)

e

Cy(r) = (kTnAv,)? sinc?>TAv, + (KT, Avy)?sinc?r Avy

The cos 27 (2vs7) term refers to the high frequency carrier which will be filtered off in any
low frequency averaging process. This averaging process can be taken over an arbitrary time
interval AT,,. This is equivalent to filtering in the frequency domain with a filter II(v/2v,)
with v, = 1/(2AT,,) commensurate with the Nyquist sampling theorem.

The averaged value of the autocovariance is then obtained in the 7 domain by convolution of
Cy (1) with the Fourier transform II(v/2v.) < 2v.sinc2v,T.

Assuming v, € Avs < vg, the cos27(2v47) term in expression (11.24) averages to zero.
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Consequently we have:

[Cy(T)]ar = (KT}, Avy)®sinc?r Avg * 2u,sinc2u, 7
+o0o
= (kT,Av,)? - 2u, / sinc®7’ Avgsinc2v. (1 — 7')dr’ (11.25)

—0o0

and with a change of variables u' = 7' Av, this becomes:

+0o0
20,
[Cy(w)] \p = (KT)*Avg - 2, / sincZU'sincAV (u —u)du' (11.26)
Vg
—00

Since v./Avg < 1, sinc(2v,./Avg)u' varies very slowly compared to sinc?u’. We may there-
fore regard sinc?u/ as a d-function in comparison to sinc(2v./Av,)u’. Moreover we also have

o] +o0o
the proper normalization, since [ sinc?u'du’ = [ 6(u')du’ = 1. Applying this approxima-
— 00

—0o0
tion we get:
+00 9
2 L2l
Co@) e = (KTo)?Av, - 20, / S Jsine 32 (u = o)
9 .2,
= (kT,)"Avs - 2v.8inc—u (11.27)

Avg

Substituting 7 = u/Avs we arrive at the final expression for the AT-averaged value of the
noise autocovariance:

[Cy(T)] op = (KT)?Avy - 2v,sinc2v,T (11.28)

The noise variance [Cy(0)] xp = (kT5)2Avg - (2v¢) should be compared to the strength of a
radio source signal characterized by a source temperature Ts. The average value of this source
signal after quadratic detection follows from:

(bp)s = Ry, (0) = 02, = kT Avy (11.29)

and the signal-to-noise ratio thus becomes:

_ (:U'l/))s _ Ts (Avs 1/2
S/N = T <g> (11.30)

i.e. the signal to noise is proportional to the square root of the receiver bandwidth Ay, and
inversely proportional to the double-sided bandwidth of the integrating (averaging) low-pass
filter v.. Introducing AT,, = 1/(2v.) (Nyquist sampling) we get:

T
S/N = =% (A, AT, )? (11.31)

Ty
i.e. the S/N ratio improves with the square root of the product of the radio-channel bandwidth
and the integration time AT,,. In practice the noise temperature of a radio-wave receiving

system is designated as the system or operational temperature that includes the contributions
to the noise of the sky, the antenna and the receiver system. The S/N =1 sensitivity for
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detecting a radio source against the system thermal noise temperature is sometimes referred
to as the radiometer equation:

T
S/N = % (AVSAT,M,)I/2 radiometer equation! (11.32)
system

The minimum detectable source power for one degree of polarization with a signal to noise

ratio of one is given by:
(Pe)min = KTy (AvyAT,,) ? (11.33)

11.4 Photoconductor

11.4.1 Operation principle and Responsivity

A photoconductor exhibits a change in conductance (resistance) when radiant energy (pho-
tons) is incident upon it. The radiant energy increases the conductance (og) by producing
excess charge carriers in the photoconductor, which is fabricated from a semiconductor mate-
rial. The charge carriers comprise electron-hole pairs in the case of an intrinsic semiconductor.
In extrinsic semiconductors the excess charge carriers comprise either electrons (n-type) or
holes (p-type). The spectral responsivity of a particular photoconductor is determined by its
energy gap: only photons that have energies greater than the gap energy will be absorbed
and cause an excess current flow. The photoconductor is operated in a mode that involves the
application of an external electric field (voltage bias) that gives rise to a bias current. This
bias current becomes modulated by the excess charge carriers that are produced by photon-
excitation. Hence a photoconductor belongs to the category of modulation transducers (see
figure (11.7). To put the above discussion about the operation principle on a proper physi-

A
\j

radiation electric

electric

Electrode

Figure 11.7: (Left): Photoconductors belong to the category of modulation transducers.
(Right): Sketch of the geometry of a photoconductive element.
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cal basis, the response to a radiative signal will be derived in this section. A material with
conductivity og produces a current density j given by:

j=o0oE (11.34)

in which E represents the electric field strength generated by the bias voltage Vp accross the
photoconductor (| E | in Volt-m~! and o in Ohm~!-m~!). Microscopically the current density

j can also be expressed as
j=Ngqu (11.35)

in which N represents the volume density of the free charge carriers, ¢ the elementary charge
and v the drift velocity of these charges in the applied electric field. This drift velocity o
can also be written as ¥ = MCE, with p the so-called mobility of the charge carrier. For an
intrinsic semiconductor a distinction needs to be made between electron conduction and hole
conduction: the mobilities p,, for electrons and y, for holes are quite different (u,, = 3p,):

j = —nqu, + pqup (11.36)

with n/p the electron/hole densities and vy, /v, the electron/hole drift velocities (opposite
directions). Note that g is the elementary charge and has a positive sign. Combining equations
(11.34) and (11.36), an expression for the conductivity o¢ follows:

o0 = q(npn + pip) (11.37)

which reduces to oy = gnu, and og = gpp, in the case of a heavily doped n-type, respectively
p-type extrinsic semiconductor.
Consider now a n-type semiconductor, which is irradiated by a beam of radiant energy with a
spectral photon irradiance (= monochromatic photon flux density) F'(\). In the equilibrium
situation the number of excess conduction electrons follows from the fact that the generation
rate should match the recombination rate:

dAn An

L —g—-—"—" =0 11.38

dt g T ( )

with An the equilibrium number of excess electrons per unit volume (= excess carrier con-
centration), 7; the life time of these electrons against recombination and ¢ the generation

rate:

g = TNFR) (11.39)
d

with 7(A) the photon detection efficiency and d the thickness of the photoconductor material.

The increase in conductivity Ao = o — o follows from:

- g NF N1 quan(NT A
Ao = qupAn = J =1 W o(N) (11.40)

in which ®()\) the monochromatic radiation flux in Watt, A the illuminated area of the
photoconductor and A\ the wavelength under consideration. Given a fixed bias voltage Vg
across the photoconductors, the relative change in conductivity Ao /o can be related to a
relative change in current AI/Iy and resistance AR/ Ry as:

Aoy AR AT I

- = = 11.41
oo R() I[) I[) ( )
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in which Iy, Ry represent the photoconductor DC-current/resistance in the absence of radi-
ation and AI = I, the photon-generated current (photo-current).

Introducing the detector width W and length [ (A = [W, see figure (11.7), Iy can be expressed
as

Iy=Wd|j| (11.42)
and hence: A (V)r v
_ o0 _ NAGA  Tefn VB
I, =1 o0~ he B D(N) (11.43)

The term 7ou,Vp/I? is commonly referred to as the photoconductive gain G. Introducing
the transition time 73, of the free charge carriers accross the photoconductor length [, i.e.
Ter = Mf—‘;,B, G gives the ratio between the carrier life time against recombination in the
photoconductor and its transition time, i.e. G = 7¢/ 7.

The current responsivity R;C()\, v), assuming a modulation of the photon flux density ®(\)
with frequency v follows from:

RIIJC(A, v) = =Gn(\)g — (11.44)

in Ampere/Watt.
In practice the photocurrent I,. is measured over a load resistance Rj in series with the
photoconductor resistance Ry, translating I,,. in an equivalent voltage Vp, see figure (11.8).

I, + Al
>

Photoconductor
=1 R, + AR

G

Figure 11.8: Photoconductor: bias circuit.
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In this case the spectral voltage responsivity is given by:

RrRy A
Rl O\0) = 52 G\

= 11.45
Rr + Ry ( )

in Volt/Watt. 4

The above expressions are only valid for low-frequency operation of the photoconductor,
where dielectric relaxation or recombination life-time effects are not of concern. In the next
section, the frequency response of photoconductors will be addressed.

In order to raise the responsivity of a photoconductor, one should

e enlarge the quantum efficiency n(\) by minimizing reflection effects at the entrance plane
through application of anti-reflection coatings and by creating a larger cross-section for
the internal photo-electric effect.

e increase the carrier life time, which raises the photoconductive gain G.

e enlarge the carrier mobility . (recall that n-type charge carriers have substantially
higher mobility than p-type charge carriers).

e increase the operational bias voltage Vg, which lowers the value of the transition time
Ty in the expression for the photoconductive gain G.

11.4.2 Temporal frequency response

Consider a step-function in charge carrier generation due to a switch-on of the photoconductor
exposure to a radiation source. The response of the photoconductor is now obtained from
solving the time dependent continuity equation:

dAn(t) _  An(t)
dt g Ty

(11.46)

with boundary condition An = 0 at ¢ = 0. The solution of this differential equation is
straightforward:

ot _t
An(t) =gr(l —e ) =Ang(l —e ), (11.47)

with An,, = g7y the equilibrium excess free carrier density [m~3] The time dependent excess
carrier concentration (density) can also be expressed as the convolution of a charge generation
step-function, An.,U(t) with the photoconductor impulse response function hy.(t):

An(t) = AnegU(t) * hpe(t) (11.48)

Fourier (Laplace) transform for ¢ > 0 to the temporal frequency domain yields:

. An .
An(2mjv) = T]@Vq Hy.(2mjv) (11.49)
Substituting expression (11.47) in An(t) < An(2mjv) yields the photoconductor response
function for a dynamical input signal:
Angg 1 _ Angg 1

Hpc(27l'j7/) = Hpc(27l'j7/) - Tﬂm (].]_50)

2mjv 1+ 2mjvr,  2mjv
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Figure 11.9: For a block function z(t) of illuminating photons (top), the number of excess
charges per unit volume [m~3] An(t) in a photoconductor increases on a finite time scale
towards the equilibrium value, and drops exponentially once the illumination ceases (middle).
The impulse response function hpc(t) is an exponential (below).

and hence the frequency dependent amplitude transfer:

1
| Hpe(2mjv) | = —————— (11.51)

1+ 47r21/27£2

This expression shows that the photoconductor acts as a frequency filter that takes the form
of a first order system (see figure 11.9). At a frequency v = 1/(277,), the responsivity reduces
with 3 dB (= 1/v/2). For 2wv1, > 1, the responsivity rolls off with 6 dB per octave; i.e. a
reduction of a factor 2 by each doubling of the frequency. The cut-off frequency v. = 1/(277)
determines the characteristic bandwidth of a photoconductor with a charge carrier life time
7;. This breakpoint in the frequency domain is typically around 1 MHz, which of course varies
for various detector types. Typical response times of photoconductive radiation sensors are,
therefore, intrinsically limited to microsecond time scales.

Intermezzo: frequency filtering of a Poisson process
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In chapter 8 we derived a general expression for the autocorrelation of a train of unit-value
Dirac impulses at random time positions, an unfiltered Poisson process (WSS and ergodic):

Rx (1) = X2+ )\6(7) (11.52)

From this, by applying the Wiener Khinchin theorem to Rx(7) we can now compute the
power spectral density:

+00
Ry (1) & Say (v) = / R (7)e= 277 dr = X25(v) + A (11.53)

which is inconsistent with physical reality since it implies an infinitely high power signal. In
practice there is always a frequency cut-off at say v., owing to some (high frequency) filtering
process. We might perceive this as follows. The photon detection process involves conversion
to charge carriers that are subsequently fed into a filter network, e.g. a first order RC filter.
The RC-network acts on each individual charge impuls ¢ (d-function) with a current response
function h(t). If we now assume for convenience that each single photon generates a charge
carrier (detection efficiency=1), implying also an average charge carrier rate ), the resulting
photo-current follows from a convolution of the Dirac d-function train X (¢) with h(t):

(1)

= X() 5 h(t) 5 Y () (11.54)

with A(t) the filter circuit impulse current response function (Note: h(t) = 0 for ¢ < 0 and is
oo

a normalized function: [ h(t)dt = 1).
0

Hence we have:
Y (t) = h(t) « X(t) = /Zé(t’ —tp)h(t —t)dt' =D h(t —t) =Y + AY(t) (11.55)
o k k

Owing to the high carrier density in the charge flow, there will be a large degree of overlap
between subsequent responses. This will result in a total current I(¢) that shows a Gaussian
(normal) distribution around a mean value I. For the expectation value of Y (t) we thus find

Y - E{Y(t)}:E{/X(t—t’)h(t’)dt’}
0

o0 o0
_ /E{X(t — )Y () = A/h(t’)dt’ — \H(0) (11.56)
0 0
where for the last transition we have used:
H(2rjv) = / h(t')e 2" gt = H(0) = / h(t')dt! (11.57)
0 0

In the Fourier domain we write for the current power spectral density:

Say (v) = |H(2mjv)[* Suy (v)
M H (2mjv)|? 6(v) + A |[H(2mjv))? = X2 H2(0) + X |H(2njv))*  (11.58)
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Evidently the power is now finite, as it should be. We obtain the autocorrelation by taking
the Fourier transform of the current power spectral density Sy, (v):

Ry (1) = X2 H*(0) + A [h(7) * h(7)] (11.59)

where the first term on the right hand side gives the mean charge response of the linear
dynamic system, and the second term represents the noise. Taking the autocovariance at
7 = 0 we obtain the variance of the noise signal:

—+00 +oo —+00
Cy (0) = A / B2 (£)dt = / |\H (2mju)[Pdv = 2) / \H (2mjv) | dv (11.60)
—00 —0o0 0

in taking the last steps we have applied Parseval’s theorem and changed from a double sided
Sa,(—00 < v < 4+00) to a one-sided Sj: twice the integral from 0 < v < 0o to accommodate
physically real frequencies.

End intermezzo: frequency filtering of a Poisson process

We shall now apply the above analysis to the specific case of a photoconductive semicon-
ductor device, where the shot noise Poisson process is associated with the random generation
(G) and recombination (R) of charge carriers and where the frequency filtering arises intrin-
sically from the finite life time 74 of the generated charge carriers.

11.4.3 Photoconductor shot noise limited sensitivity
Generation/Recombination(GR) shot noise in semiconductors

Generation-Recombination noise (GR noise) originates in thermally or optically-stimulated
electronic transitions between valance and conduction band or transitions between impurity
levels, traps, or recombination centers and one of these bands. Associated with these transi-
tions are fluctuations in the numbers of free carriers and in their lifetimes, thus giving rise to
the GR noise. The detailed mathematical treatment of GR noise depends on many specific
parameters like the number of energy levels, the energies corresponding to these levels, the
electron population, and the occupancy of states.

As a simple example, the common case of an extrinsic semiconductor such as Germanium
or Silicon containing both donors and acceptors, one being predominant and exceeding in
number the number of free carriers, will be treated here.

For a simple GR two-level system we assume a generation rate (number per unit time) g(N)
and a recombination rate r(/N) which describe the transition from the impurity level to the
conduction band and the reverse (recombination) process. N is a random variable that rep-
resents the number of free carriers (predominantly electrons) in the conduction band at time
t. We further assume that both rates g and r depend explicitly only on the momentaneous
number of free carriers in the conduction band, N (¢). In general g is a decreasing function of
N (i.e. negative slope), whereas r is an increasing function of N (i.e. positive slope). In the
equilibrium (steady state) situation we have balance between the generation and recombina-
tion rates, say at a free carrier average number value N = N, at time ¢. Hence, for g. = g(V,)
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Figure 11.10: For a first order transfer function with tipping point v = v, (left), the autoco-
variance drops exponentially with |7| (right).

and r, = r(N,) we have

ge = 71¢ and N normally distributed around N, = (11.61)
1| (N —=N,)? —
p(N) = p(N.)exp — 3 [%] with variance AN? = N, (11.62)

Taking the derivatives g, = (dg/dN)y—n, and r, = (dr/dN)y—n, as the generation rate and
the recombination rate at the equilibrium number value N, respectively (dimension [sec!]),
we can assign specific time scales to the GR process by defining 1/7, = —g., and 1/7, =7,
leading to a free carrier life time:

1 d 1 , , 1 1

= _—_~ (g— _ = _=_(q — = — 4+ — and: 11.63

E o= gy nen 5 =)=t (16
AN? = N,=gc Ty (11.64)

The carrier life time 74 dictates the dynamical response of the semiconductor on changes in free
carrier generation, this response can be quantified by solving the time dependent continuity
equation for change dN (t)/dt:

dN (t) N(t)

—t
=g——2 = N(@t)=gn (1 — e*7> (11.65)
dt Ty

The dynamical behavior expressed in equation (11.65) is characterized by a first order system
with transfer function H (27jv) = 1/(1 + 2mjvry), its frequency response |H (2mjv)| trails off
at high frequencies with a tipping point at v, = 1/(277;). This is shown, one-sided, in the left
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panel of figure (11.10). The associated autocovariance function is shown in the right panel of
figure (11.10). It constitutes a double-sided exponential function centered on 7 = 0 with a
decay constant 7, that follows from the Fourier transform of the double sided transfer function:

1
H(2njv) + H(-2mjv) = o
(2mjv) + H(=2mjv) ((1+27er7£) T —27Tj”€)> T

& SU(n) +U(-r) =
27y 27y
_lrl
e ™

_ _ 11.
27y ) e

where U(7) is the Heaviside step function: U(7) =0, 7 < 0; U(7) = 1, 7 > 0. Hence we have:

_Irl
C(r)=C(0)e = with 7= !

27y

(11.67)

For the GR-process, featuring the random count variable IV, we can thus express the variance
AN? for some time delay 7 following excitation or decay as an exponential autocovariance
according to:

On(T) AN (11.68)
The associated power spectral density Sy (r) can now be obtained by applying the Wiener-
Khinchin theorem. Since we are dealing here with two independent random processes, i.e.
an excitation process followed by a decay process, in computing the spectral noise power we
incorporate a factor 2 in taking the integral of the autocovariance over all physical delays
7. Subsequently we need to convert this one-sided spectral density to a double-sided spectral
density (Sg, ) to accomodate the negative frequencies and time delays used in Wiener-Khinchin
theorem. Thus we have:

7|

o.@] o.¢]
I . Il .
Sn(v) = 2/AN26 eIV = Sy (v) = / ANZ2e 7 2™V dr (11.69)
0 —00

Performing the Fourier transform in equation (11.69) results in:

21, AN? 296742

Sax ) = T Gom)? ~ T (2mvm)?

(11.70)

As shown before, the value of the average current density |;| in the semiconductor equals
nq|ty| with n = N/V the charge carrier volume density, g the elementary charge and ¥y
the drift velocity in the applied electric field. With a cross sectional area A we have a
total average current I, = A - |j| = A - (No/V)q(d/7s) = qNe/7tr = qge(r¢/7sr) in which d
represents the distance between the electrodes of the semiconductor and 7, = d?/(uV) the
charge carrier transit time between the electrodes (with p the carrier mobility and V' the bias
voltage). Substituting in (11.70) and multiplying Sy, () by (¢/74,)? yields an expression for
the current spectral density of the GR noise:
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The mean square GR current noise AI? follows from integration of Sy, over all frequencies:

— dv —_— Ty

AI?2 = 2qI —— = AI? =4I <—> A ith 11.72
e (2) [ i of (5) avevien (7
+00 d

Ay, = / v the noise equivalent bandwidth within 0 < v < 0o
/ 1+ (271'1/7'4)2

For low frequencies the (one-sided) current spectral power can be expressed as:

AI?
Av,

G, is the so-called noise gain. In case the semiconductor has uniform resistance and an
uniform electric field, the noise gain is proportional to this applied electric field. The GR-

current noise can then be expressed as (v AIQ)G 4qGnlIeAve, with (V AIZ) GRn the

rms-noise current, I, the average total current and AI/C the noise equivalent bandwidth.

=4¢G,I, [Ampere? Hz ~'] with G, = <l> =

Ttr

T
d

S1(0) = (11.73)

Photoconductor shot noise in the signal-photon limit

The average number of charge carriers generated by a radiation beam with an average monochro-
matic photon flux density F'(\) ( average spectral photon irradiance) at wavelength A equals
Gn(A)F(X)Ape, in which A, represents the active area of the photoconductor, 7()) the quan-
tum efficiency for photo-absorption and G the photoconductive gain. The average photocur-
rent E{I,,(t)} can therefore be expressed as:

E{Ln(t)} = Ln(t) = ¢Gn(A) F(N) Ape (11.74)

with ¢ the elementary charge. The frequency response can be expressed as (see equation
(11.65)):
1

Hpe(2mjv) = 1+ 2mjuy

(11.75)

where 7, is the charge carrier life time.

<\/ﬁ> =V 44GTu (D Ave = 206\ [n(NF(N) AyeAv (11.76)

GRy,

with (\/ Al 2) the rms-noise current, I,;(t) the average total photo-current, F'(\) the

Ry,
+00
average radiant signal photon flux and Av, = [ dv/(1+ [27v7]?) the one-sided noise equiv-
0

alent bandwidth within the frequency range 0 < v < co. Substituting Av, by performing the
integration over frequency we get:

Te

Finally, for the signal to noise ratio in the signal photon limit we obtain

Iph t)
SNR = | —pP\Y)
M ( (VA?)gr,,
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Figure 11.11: Typical detectivities for several photo-conductors. Figure taken from Dereniak
and Crowe 198/.

This last equation tells us that a high value for the frequency cutoff vy = 1/(277y) leads to

a lower signal to noise for the photo-current; the reason for this is that the intrinsic system
noise is less filtered.

Photoconductor shot noise in the background-photon limit

The rms-noise in the photocurrent, derived in the previous paragraph, dominates over thermal
noise if the photoconductor is sufficiently cooled.

From expression (11.77) for the rms-noise in the photocurrent (\/ AT 2) op. Wecan also assess
ph
the spectral Noise Equivalent Power (NEP(),v)) if we assume that this photocurrent arises

from an average monochromatic background-photon fluz density B()\) instead of the average
signal-photon flux density F'(\) considered above. This NEP(\,v) represents the so-called
radiation Background Limited Performance (BLIP). Let us use the relations:

(Var)

GRy  he (B(A)A,,C>%

NEP(\v) = ——F—-— 2 = 11.79
M=o~ Uiie ()
and the BLIP normalised detectivity D*(\,v):
AAve A (n(A) )5 o
D _ _ A Av, =1/(4 11.
(A v) NEP(x1) ~ 2he \BO) by substituting Av, = 1/(47) (11.80)
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Figure 11.11 shows the theoretical peak detectivity for n(\) = 1 as a function of wavelength,
assuming radiation Background Limited Performance(BLIP) arising from an omnidirectional
blackbody radiation field at 300 K integrated over the upper hemisphere of 180°. Also included
in figure (11.11) are a number of common extrinsic photoconductors and their corresponding
operating temperatures. Detectivities of two types of thermal detectors (bolometers) are
displayed for comparison. The thermal detectors lack the cut-off feature in wavelength due to
the different detection principle, they show a considerably lower value of D*(A,v) but cover
a wider spectral band than the photo-conductive devices.

11.4.4 Photoconductor noise limited performance

So far we have only considered the generation of GR-noise in photoconductive devices as a
consequence of irradiation by an external photon source, both as a signal source or as an om-
nidirectional background source. However, if the photo-conductor is not exposed to external
radiation, there still remain intrinsic noise contributions owing to the presence of a resistive
bias circuit, the thermal environment of the device and imperfections in the homogeneity of
the conducting material and the electrical contacts. These noise components are often labelled
as ’dark noise’ contributions since they do not relate to photoconductor irradiance. The im-
perfections in materials and contacts cause a 1/f noise component and since photoconductors
require a bias current there will always be 1/f noise present. The mean square current noise
is obtained from integrating the 1/f current power spectral density over the equivalent noise
bandwidth Avy

— dv
AT, = / Si(v)dv = al? / - (11.81)
Ayl/f Ayl/f

with a a proportionality constant and I, the bias current through the photoconductor. For a
photoconductor it is an observational fact that at low frequencies the dominant noise exhibits
a 1/f dependence incorporated in the expression for its current power spectral density. As
the frequency increases this component drops below the GR-noise or the thermal noise in
case of a low photon flux, see figure (11.12). The 1/f noise component does not constitute
a fundamental limit to sensitivity, careful surface preparation and contact technology can
potentially reduce the integral contribution of this noise to negligible levels. In addition to
the GR-noise generated by an external radiation source, we also have a GR-noise contribution
to the dark noise owing to thermal agitation of charge carriers:

(\/ﬁ) = \/4¢2G2gy Av, = ¢G [ with Av, = 1/(47) (11.82)
GRyp, e
in which ¢4, represents the thermal generation rate. If the device is sufficiently cooled, the
thermal generation will decrease so that it can be neglected compared to the other noise
contributions.

Thermal noise occurs in all resistive materials. If we assume that the photo-conductive device
has a resistence R, and is part of a a bias circuit as displayed in figure (11.8), the mean
square thermal noise current can be expressed as:

— Tpe Ty k[ Ty | TL s
AIZ = 4k (Rl;c + R_L> Av, = - (RI;C + R_L> , substituting Av, = 1/(47,) (11.83)

where T),. and 17, are the temperatures of the photo-conductive sensor and the load resistor
(Rp) respectively, 7, represents the high frequecy cut-off parameter of the electronic pro-
cessing filter. For simplicity we shall assume that this electronic filter comprises a single
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Figure 11.12: Bode diagram of the current power spectral densities Sp(v) for noise components
encountered in photo-conductive devices as a function of temporal frequency. At low frequency
the 1/f component dominates with a roll-off slope of -1 (ox v™1), however between 100 Hz and
1 MHz the GR-noise due to external irradiance should dominate if the temperature is kept low
enough to suppress the thermally generated GR-noise (black dotted) and the thermal noise.
Above the roll-off point due to the life time 1y of the radiation generated charge carriers (slope
-2), the thermal noise will gradually take over at the higher frequencies up to a high frequency
cut-off determined by the chosen filter pass band in the processing electronics (roll-off slope <

2).

integration with time constant 7,, and transfer function H (27jv) = 1/(1 + 2njvr,). If the
load resistor is mounted on the heat sink of the photoconductor, we have T}, = T, = T,
which is advantageous for the thermal noise of the load resistor, since photoconductors are
often cryogenically cooled. We can then substitute R,. and Ry, by a single parallel equivalent
resistor Ry, = RpcRr/(Rpc + Rp).

All noise components add in quadrature (summation of noise variances), hence for the total
mean square noise current, including both BLIP noise and ’dark’ noise, we can now write:

— al?Av kT 2072
AIEoF( a8 + 2 [n(A)B(A)Apc+gm1> (11.84)

v Ryurmn Ty

The current power spectral densities of these various noise components are displayed in figure
(7?). As already mentioned, the total contribution of the 1/f noise can be made negligible
by proper component manufacturing technologies and cooling will significantly suppress the
thermally generated GR-noise. Therefore, in practice, the thermal resistor noise in the bias
circuit will be the main factor in determining to which irradiance level background-photon
GR-noise will dominate the photoconductor’s performance, i.e we have the condition:

T 2G2 /1
<1 (—”

Ryar 2 ) (1A B(X) Ape] (11.85)

Te
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In practice the ratio 7,/7; = 1 so as to arrive at an optimum match between the electronic
filter and the photoconductor response that is governed by the charge carrier lifetime.

In order to remain background-photon-noise(BLIP)-limited, the ratio of temperature to resis-
tance must go down as B(\) decreases, so this sets certain limits to the load resistor and the
operational temperature of the photo-conductive element. For high performance extrinsic IR
sensors, the load resistor is much smaller than the sensor resistance, so R, ~ Ry, allowing
for external tuning. However for intrinsic photo-conductors like HgCdTe R, =~ R, in that
case resistance tuning in the bias circuit is no option.

Equation (11.80) shows that the BLIP spectral D* gets better if the level of the background
irradiance goes down. If it is reduced to zero no further improvement in the value of D* can
be achieved since the condition given in equation (11.85) is no longer fulfilled. This is the
case where the thermal noise becomes the dominant noise contribution. Hence, we can write
the following expression for the spectral noise equivalent power NEP(\, v):

he kT 2
NEP(\v) = NGO (RparTn> (11.86)

From this we can now derive the D* for the thermal-noise-limited case of a photo-conductive
element:

IW%WZN%%%%Zéﬁ%W”W

Asg Rpar
kT

1
), with Ave = 1/(47,)  (11.87)

From this expression for the normalized detectivity in case of thermal-noise-limited perfor-
mance, it can be seen that the maximum achievable D* is governed by the resistance-area
(AgRpqr) product, i.e. high performance photoconductors require a high RA-product. More-
over the performance is also linearly related to the photoconductive gain, so sensors with an
intrinsically low RA-product, like HgCdTe, can still attain a relatively high D* value owing
to a high photoconductive gain factor. For sensors with an Rg > Ry operating in the thermal
noise limit, the theoretically achievable maximum D* is determined by the value of the load
resistor Ry, and is described by the same equation as the one for a photovoltaic sensor in which
the equivalent Ry, is in the junction resistance (viz. the next paragraph on photovoltaic sen-
sor elements). As an example: for the low-background case, in order for a photoconductive
sensor with a G = 0.5 to have equivalent performance as the photovoltaic sensor, the load re-
sistance Ry, should be four times higher than the junction resistance of the photovoltaic sensor.

11.5 Charge Coupled Devices

11.5.1 Operation principle

A charge-coupled device (CCD) in its simplest form constitutes a closely spaced array of metal-
insulator-semiconductor (MIS) capacitors. The most important among the MIS elements
is the metal-oxide-semiconductor (MOS) capacitor, made from silicon (Si) and employing
silicon dioxide (SiO;) as the insulator. The charge position in the MOS-array of capacitors is
electrostatically controlled by voltage levels. Dynamical application of these voltage levels and
their relative phases serves a dual purpose: injected charges (e.g. due to radiation generated
electron-hole pairs) can be stored in the MOS capacitor and the built-up charge (i.e. charge
packet) can subsequently be transferred across the semiconductor substrate in a controlled
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Figure 11.13: Single CCD-electrode. Vi is positive, Qrny and Qp are negative.

manner. Monolithic CCD arrays are available for imaging in the near-infrared, the visible and
the X-ray range, for the mid-infrared (up to 20 pm), hybrid fabrication is employed in which
the infrared-sensitive detector material is sandwiched to a CCD array of cells for read-out.

In the following sections a short description is given of the storage and transfer mechanisms
and of a few focal-plane CCD-architectures.

11.5.2 Charge storage in a CCD

Two basic types of charge coupled structures exist. In the one type, charge packets are stored
very close to the interface between the semi-conductor (Si) and the overlaying insulator (SiO5).
Since the charges reside virtually at the surface of the semiconductor layer, these devices have
become known as surface channel CCDs (SCCDs). In the other type, charge packets are stored
at some distance away from the surface of the semiconductor, such devices have become known
as bulk or buried channel CCDs (BCCDs). From the user point of view both devices are very
similar, therefore the discussion here is mostly limited to SCCDs since their concept is easier
to understand.

Figure 11.13 shows a single CCD-electrode comprising a metal gate, separated by a thin
oxide layer (few times 0.1 pm) from a p-type semiconductor (hole-conduction). Prior to the
application of a voltage bias to the gate electrode, there will be a uniform distribution of holes
(majority free charge carriers) in the p-type semiconductor. As the gate electrode is made
positive however, the holes are repelled immediately beneath the gate and a so-called depletion
layer (devoid of free charge) is created. Increasing the gate voltage causes the depletion region
to extend further into the semiconductor and the potential at the semiconductor/insulator
interface (¢s) becomes increasingly positive. Eventually, a gate voltage bias is reached at
which the surface potential ¢g becomes so positive that electrons (i.e. the minority charge
carriers in the p-type material !) are attracted to the surface where they form an extremely
thin(~ 0.01 pm thick), but very dense (in terms of charge density) layer, a so-called inversion
layer. Basically the electrons reside in the deep potential well at the semiconductor surface
and do not recombine with holes, since the latter are immediately repelled from the depletion
layer upon creation. Therefore, if radiation is incident on a single CCD electrode, the electrons

238



from the produced electron-hole pairs will be stored in the inversion layer, the holes will be
repelled from the depletion region. An analytical expression for the variation of the surface
potential ¢g with the gate voltage Vi and the surface-charge density Q)rn, in the inversion
layer can be derived as follows. From figure 11.13 it can be seen, since the p-type substrate
is grounded, that

Vo = Vou + 65 (11.88)
Charge neutrality prescribes:

QG = _(anv + QD) (1189)
in which Qp = —qN,zp represents the surface charge density in the depletion later (i.e.

the volume charge density —gN, integrated over the thickness of the depletion layer zp).
N, is the density of the acceptor doping in the p-type semiconductor, ¢ is the elementary
charge. From the theory of depletion penetration, which basically involves integration of the
Poisson equation in electrostatics, xp = 2e¢s/qN,, with € the dielectric constant (e = epey).
Substituting this in @p and writing Q¢ = VoyCor (Coy represents the oxide capacitance per
unit area (Cyy = €/ty, with t,, the oxide thickness)), the expression for the surface potential
¢s becomes after some manipulation:

bs =Va+Vo+ %I” — \/2 <VG + %") Vo + V¢ (11.90)

Vo is a constant (qgeN,/C2,), with the dimension Volt. The value of ¢g as a function of Vg
(with Qrny = 0) and as a function of Qry, (with Vi = 10 and 15 V respectively) is displayed
in figure 11.14 and figure 11.15 for a few thicknesses of the insulating oxide layer.

The surface potential ¢g can be interpreted as a potential well, the depth of which is
determined by the magnitude of the inversion charge packet Q. (in analogy with a bucket
partially filled with fluid). From the figures it can be seen that ¢, is practically a linear
function of Qry, and Vi, this arises from the fact that the constant V{ is relatively small
compared to typical values for Vi; i.e. Vo = 0.14 Volt for a 0.1 pm thick oxide layer. Since
Ve = 10 - 15 Volt:

in good approximation (11.91)

Note: in the above computation the difference in workfunction between the metal and the
semiconductor has been neglected, i.e. the so-called flat-band condition has been assumed. In
practice this can always be achieved by adaptation of the potential V. Moreover ¢g has
a minimum value related to the Fermi-level in the semi-conductor, this boundary condition
has been omitted from the above formulae, since it is of no direct relevance to the storage
principle.

As will be seen in the next section, storage of charge at the Si-SiO, interface introduces
potential losses of accumulated charge during charge transport, owing to charge trapping in
the atomic surface states. To prevent such losses the charge packet should preferably be kept
at a potential minimum separate from the Si-SiO; interface, i.e. a minimum in the bulk-silicon
has to be generated. This can be achieved by adding an n-type layer on top of the p-type
silicon. The ionised positive ions of the n-type top layer raise the positive gate voltage to an
ever higher channel potential inside the silicon. Figure 11.16 shows the comparison with the
original situation (electron-potential minimum at the interface). As illustrate, the potential
well in the n-type Si has now a minimum (for electrons) deeper in the bulk Si. This is the
principle of the BCCD, charge is now stored and transported in a channel embedded in the
bulk silicon and is not anymore subject to charge loss at surface states. Figure 11.16 shows
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Figure 11.14: Variations of the surface potential ¢g with the gate voltage Vi for different
values of the oxide thickness toz. The charge in the inversion layer Qrpy @S zero in all cases.
Figure taken from Beynon € Lamb (1980).

also the comparison between an empty and partly filled SCCD, (a) and (b), and an empty and
partly filled BCCD, (c¢) and (d). In the latter case the charge packet flattens the minimum
of the potential well, this can be regarded as a “neutral layer” which increases in width if it
becomes filled with charge.

11.5.3 Charge transport in a CCD

The way in which a charge packet is transported through a CCD structure (charge-coupling)
is illustrated in figure 11.17. Assume the charge packet is stored initially in the potential
well under the second electrode (from the left in the figure) which is biased to say 10 V. All
CCD electrodes need to be kept at a certain minimum bias (=~ 2 V) to ensure that each MOS
capacitor operates in the inversion-mode. The potential well under the 10 V electrode is much
deeper than those under the 2V electrodes and, provided it is not “overfilled” with charge, it
is only in this well that charge will be stored. Suppose that the bias on the third electrode is
now increased to 10 V. If the second and third electrode are sufficiently close, both wells will
merge. The equations that govern the charge transfer process comprise the current density
and the continuity equation. For an n-type channel (electron charge) these equations are:

) B 0¢(xz,t) on(z,t)
i@,t) = qpan(z,t)—5 — +¢Dn—p (11.92)
on(z,t) 1 9j(z,1)
= = 11.
ot q Oz (11.93)
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Figure 11.15: Variations of the surface potential ¢g as a function of the inversion charge Q
for two values of the gate voltage Vi and of the oxide thickness t,,. Figure taken from Beynon
& Lamb (1980).

where charge propagation is in the x direction (no vector treatment), n(z,t) is the electron
density, u, the electron mobility and D, the electron diffusion coefficient. This diffusion
coefficient is related to the mobility of the charge carriers i, through

D, kT

— 11.94
Hon, q ( )

(the so-called Einstein relation). The first right-hand term in equation 11.92 refers to drift
of the charge packet under a gradient in electric potential, the second term refers to thermal
diffusion under the presence of an density gradient. The drift component arises from two
causes. The first cause derives from self-induced fields in the presence of a gradient in charge
concentration, charges of the same type will mutually repel and reshuffle the concentration
of charge carriers in such a way that this gradient becomes zero. Secondly, due to so-called
fringing fields, in which charges are forced to move due to the existence of electric fields
generated by the various voltage levels on the gates.

The equalizing of charge concentration under electrodes two and three described above
is hence governed by the drift speed due to self-induced fields and by thermal diffusion. In
practice these two processes are frequently described by introducing an effective diffusion
coefficient D,, .rr, since both arise from the existence of a gradient in carrier concentration.
For large charge packets (large concentration difference), the process is mainly determined by
the self-induced drift, for small charge packets (e.g. < 1% of the well charge capacity) thermal
diffusion dominates and slows the transfer process down.
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Figure 11.16: Surface and channel potential for a SCCD ((a) and (b)) and a BCCD ((c) and
(d)), with empty ((a) and (¢)) and filled ((b) and (d)) wells. Figure taken from Theuwissen
(1995).

Returning now to figure 11.17, if the charge is evenly distributed under electrodes 2 and
3 (situation c), reducing the potential on the second electrode to 2 V will introduce a fringe
field and the remaining content of this well will drift into the third well owing to the fringe
field. The final situation shown in (e) is a deep potential well and its associated charge packet
moved one position to the right. By applying a succession of varying voltages to the gate
electrodes, the charge packet can be transported through the CCD structure in a controlled
manner. The gate electrodes can be grouped together with each group or phase connected to
a different voltage clock. Various CCD structures and electrode systems are employed, the
one described above requires a three-phase clocking system and is therefore referred to as a
three phase CCD. Each image pixel requires in this case three gate electrodes to store and
transport the charge packet.

It is obvious that the transfer mechanisms described are not perfect, i.e. not all of the
charge is transferred and some signal charge is left behind. The charge transfer efficiency
(CTE) is the ratio of charge transferred to the initial charge present. A complementary term
often used in the literature on these devices is the transfer inefficiency (CTI), i.e. the charge
lost to the initial charge packet: CTI = 1 - CTE. Typical values of CTE are of the order
0.99999 for a good device or CTI = 10~°. As already mentioned before the CTE of a SCCD
is, without special measures not discussed here, considerably worse compared to the BCCD
due to the interface trapping states. Moreover, due to the relaxation of charges from the
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Figure 11.17: (a)-(e) Transport of a charge packet in a CCD. (f) clocking waveforms for a
three phase CCD. Figure taken from Beynon € Lamb (1980).

traps, the so-called trapping noise in a SCCD is at least an order of magnitude larger than in
BCCDs, which explains the preference for BCCDs in certain applications.

Till now, only charge transport along the gate electrodes in one direction had been dis-
cussed. It is of course necessary to limit the extent of the potential well in the orthogonal
direction. This lateral confinement of the charge packet is achieved by a so-called channel-
stop diffusion, which comprises a heavily doped region of the semiconductor relative to its
neighboring regions. This region exhibits a large conductivity o relative to the surrounding
material and quenches the surfaces potential ¢g so that no depletion region can be formed.
In this way one dimensional columns (or rows) are implemented in the CCD structure along
which the charge transfer occurs, isolated from its neighboring columns (rows). At the po-
sitions of the channel stop diffusion (p™ or n™ material), the field oxide separating it from
the gate structure is much thicker as to prevent break-down of the p* (n™) contact to the
conducting gate electrodes. A three dimensional display of a BCCD structure is shown in
figure 11.18.

11.5.4 Charge capacity and transfer speed in CCD structures

The amount of charge that can be stored in a CCD pixel depends mainly on two variables:
the clock voltages and the electrode area in combination with a SCCD or a BCCD structure.

Regarding a SCCD, the full-well storage capacity is in good approximation given by the
oxide capacity under the gate electrode (Age.Cor) and the gate voltage Vi:

anv
Va

Aeleccom = - Q[n'u - AelecConG (1195)

Remember: C,, is the oxide capacitance per unit area, Agj. is the electrode geometric area).
p p ) g
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Figure 11.18: Three dimensional display of a BCCD structure.

As an example, take Age. = 10 x 20 pm?, top = 0.1 pm (C,p = €9 /tor) and Vg = 10 V: in
that case Qrny = 0.6 pC =~ 3.6-10° electrons.

In case of a BCCD, the expression is somewhat more complicated due to the finite depth
of the charge storage and transport in the Si. However the ratio in charge handling capacity
between SCCD and BCCD structures can be shown to approximate:

Qsccp €oxTn

QBccp b 3esiton (11.96)
in which z, represents the width of the neutral layer in the BCCD when the full storage
capacity is reached. For typical values z,, = 2 ym and t,, = 0.1 pm, this ratio amounts to
about 3. Consequently, creation of an embedded channel lowers the charge handling capacity
by a substantial factor.

The intrinsic speed of charge transport in a CCD structure is governed by transport
equation 11.36, depending on the time constants for self-induced drift, thermal diffusion and
fringe field drift.

In a SCCD the time constant for self-induced drift is a function of charge density, C,;
and the interelectrode spacing. For Cy, = 1 pF, Qrnp = 10*? cm? and spacing 25 pm, the
time constant 7g; = 0.14 ps. The time constant for thermal diffusion of an electron packet
(D, ~ 10 cm?-s~1) amounts to 0.25 us. On this basis the high frequency limit would appear
to be a few MHz, however the fringing field of the neighboring gate electrodes aid the transfer
considerably, especially when thermal diffusion is dominant and clocking frequencies up to 15
MHz can be used for SCCDs

In the case of the BCCD the speed is potentially dominated by the fringing field of the
neighboring gate due to the depth of the charge channel. The potential levels do not exhibit the
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Figure 11.19: Fringing fields at the Si-SiOy interface at several depths. Figure taken from
Beynon € Lamb (1980).

flat structures encountered at the Si-SiO; interface as displayed in figure 11.17 but possess
a continuous gradient along which charge can drift swiftly to a potential minimum. The
situation is schematically shown in figure 11.19 for a few depths of the charge channel. BCCDs,
with usually smaller charge packets, can therefor be read out at much higher frequencies, up to
300 MHz, while still retaining acceptable values of the CTE for several imaging applications.

11.5.5 Focal plane architectures

The two-dimensional CCD imaging arrays can be subdivided into frame-transfer (FT) imagers,
interline-transfer (IL) imagers and frame-interline-transfer (FIT) devices. The FT and IL
architectures are briefly described below.

Figure 11.20 shows the device architecture of a frame-transfer image sensor, the operation
is shown in figure 11.21. The CCD comprises a photosensitive array and a memory array
coupled to a linear output register. The light sensitive top part of the device, or image section,
integrates the charges produced by the impinging photons over a predefined integration time.
At the end of this period the charge packets are transferred along the columns into the memory
array (figure 11.21(b)). This transfer needs to be done quickly to prevent disturbance by light
falling on the image section during read-out. Subsequently each row in the memory section
is clocked into the linear output register from which it is shifted to the output stage amplifier
(video signal). During transport of all video information from the storage area to the output
stage, all CCD cells in the image array are again biased in the integration mode, allowing the
build-up of the next image.

A simpler version of the frame-transfer imager is the full-frame device, which lacks the stor-
age section. During read-out the incoming light should be interrupted to avoid disturbances.
This can be done by using a shutter which cuts out the light path to the imager.

The typical architecture of the interline-transfer imager is displayed in figure 11.22. In
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Figure 11.20: Architecture of a frame-transfer image sensor. Figure taken from Theuwissen

(1995).

this case the photo-sensitive pixels are located near the shielded CCD transport register. The
integration of charge takes place in the photo-sensitive pixels during exposure to the radiation
source, at the end of the integration time the charge packets from the photo-sensitive columns
are transferred in parallel to the vertical registers alongside them, see figure 11.23(b). The
vertical shift registers are emptied into the horizontal-output register row by row which are
read-out serially at the output. The advantage of this architecture is the very short transfer
time to the parallel storage column as compared to the serial shift to the storage section in the
case of the frame-transfer CCD. On the other hand, the presence of periodic storage columns
in the image area may introduce severe aliasing effects close to the spatial Nyquist frequency
of the CCD-array.

If a pixel has a characteristic size Az, the sampling of an image can be described with
an array of normalized window functions: ﬁl‘[ (A=) . The spatial frequencies (s) associated
with this window function is obtained from its Fourier transform: sincsAz.

If the pitch of the pixels in the image plane is given by z(, the Nyquist frequency follows

from sy = ﬁ Normalizing the spatial frequency s on sy yields the geometrical MTF for a
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Figure 11.21: Working principle of a frame-transfer image sensor. Figure taken from Theuwis-
sen (1995).

Photodiode array

Vertical CCD registers

Output Horizontal output CCD register

Figure 11.22: Architecture of an interline-transfer image sensor. Figure taken from Theuwis-
sen (1995).

linear array of pixels Az with pitch zg (sp = s/sn):

A
MTF,e, = sincsg ° (11.97)

Zo
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Figure 11.23: Working principle of an interline-transfer image sensor. Figure taken from
Theuwissen (1995).

For contiguous pixels, like in a frame-transter CCD array, Az = zq yielding:
. S0
MTFpp = sinc— (11.98)

with MT Fpp =0 for sy = 2, i.e. s = 2sy.
For non-contiguous pixels, like an interline transfer CCD array,Az ~ % yielding:

MTF;; = sincS4—0 (11.99)

with MTF;;, =0 for s) = 4, i.e. s =4sy.

This analysis indeed shows that the MTF of the interline-transfer CCD extends twice
as high above the Nyquist frequency as compared to the frame-transfer CCD, giving rise to
potential Moiré fringes due to aliasing. This effect can only be avoided by limiting the spatial
frequencies of the input-image signal to sy.

11.5.6 Wavelength response of CCDs

For visual light applications, two possibilities can be considered to irradiate the CCD, i.e.
irradiation through the front surface and irradiation through the back-surface, so-called back-
illumination. Ilumination through the front surface, i.e. the side which contains the gate
structure, requires the usage of poly-silicon gate electrodes which transmit light. A problem
encountered in this case entails the strongly wavelength dependent absorption and interference
effects occurring in the thin poly-silicon gate layer (= 0.5 pm) and the thin oxide layer (= 0.1 —
0.2 pm). The current responsivity and the interference effects are shown in figure 11.24. Also,
the blue-responsivity is strongly suppressed by absorption in the poly-silicon gate material.
Back-illumination requires thinning of the Si-substrate to ensure that the photon-generated
charge reaches the potential wells. The charge transport can be aided by building an electric
field gradient into the semi-conductor, this electric field gradient can be provided by increasing
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Figure 11.24: CCD spectral response. Figure taken from Beynon € Lamb (1980).

the substrate doping concentration in the regions close to the silicon surface. This increased
doping has the effect of bending the energy bands at the back of the surface so as to accelerate
the photon-generated carriers towards the front surface and the potential wells. This tech-
nique is particularly useful for increasing the blue-responsivity where the charge carriers are
generated close to the rear silicon surface. This back-face response can be further improved by
minimizing the reflection of light from the back surface employing a A/4 thick layer of silicon
monoxide at the wavelength of interest. Figure 11.24 shows a quantum efficiency of about 50
% with back-illumination, which can be raised to a peak efficiency of about 90% by using the
proper antireflection coating. Figure 11.25 shows a complete family of CCDs for optical light
with different architectures and array sizes.

Non-visible imaging with CCDs is normally divided into three wavelength ranges:

Wavelengths longer than 1 pm, for which the photo-electric absorption coefficient in sil-
icon is too low (hvrr < bandgap) and all photons pass through the structure without being
absorbed. For this reason infrared photons need to be converted first into electrons, e.g. by
means of so-called Schottky-barrier structures in which pixels are used made out of platinum-
silicide (PtSi). An array of these detectors is then coupled to a CCD read-out system.

The responsivity in the thermal IR can theoretically be extended in this way to approxi-
mately 5.6 pm.

For wavelengths shorter that 0.4 ym and longer than 10 nm the opposite is the case as
compared to the IR range: the absorption is very high since not only silicon, but also the
silicon oxide layer has a very high absorption coefficient in this wavelength regime. In figure
11.26 the penetration depth in silicon is displayed over a wide wavelength range, it is clear
that the UV photon will be stopped in the top layers above the CCD. To avoid this problem
several solutions are possible:

Deposition of an UV-sensitive phosphor on top of the active area of the imager which
down-converts the energy of the UV-photons to longer wavelengths. An example is Coronene,
which fluoresces in the green portion of the visible spectrum under UV exposure.

Also, as in the visible regime, back-illumination is an option. However, due to the high
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Figure 11.25: Photo of several CCDs. Top left: back-side illuminated FT imager with 1260
X 1152 pizels. Top right: o full frame CCD with 3k x 2k pizels, each of 9 um x 9 pm.
Middle: a low-cost FT sensor with 270,000 pizels, total diameter of the image section is 3.2
mm. Bottom left: HDTV IT image sensor with 2M pizels, 11 mm diagonal. Bottom right:
FT CCD for broadcast applications with 500,000 pizels.

absorption, the substrate of the CCD has to be thinned to typically 10 pm, which is a very ex-
pensive process and requires subsequently very delicate handling of the device. An alternative
is deep depletion of a lightly-doped, high-resistivity substrate, such that the depletion region
under the CCD gates extends to the back of the siliconwafer. The charge carriers generated
by the UV illumination are swept to the front side into the potential wells by the electric
field of the deep depletion layer. This approach does not require the extreme thinning men-
tioned above for conventional high-doped material, a thickness of 50 pm still allows adequate
collection of charge owing to the deep depletion field.

Application of CCDs in X-ray imaging has made a substantial development over the recent
years, in particular for X-ray astronomy where the X-ray photon flux is sufficiently low to
register the (small) charge packet associated with a single X-ray photon. In contrast to
the optical application, exposures yielding no more than one X-ray photon per 100 pixels
is pursued before read-out, since in this case both spectral an spatial information can be
obtained simultaneously, i.e. the magnitude of the charge packet represents in this case the
energy of the impinging X-ray photon. Moreover, apart from the simultaneous spatial and
spectral resolution, deep depletion CCDs (30 — 50 pm) provide a high quantum efficiency (>
90%) over a wide X-ray range (0.2 — 10 nm) and are therefore ideally suited as an imaging
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Figure 11.26: Penetration depth of silicon as a function of wavelength. Figure taken from
Theuwissen (1995).

spectrometer behind a grazing incidence X-ray telescope. Back-illumination, which again
avoids the problem of penetrating the gate structure and the oxide layer, gives quite superior
response to low-energy X-rays (2 — 10 nm). Moreover, as importantly, a deep depletion layer
minimizes the effect of charge diffusion of the X-ray-generated charge cloud, since the electric
field causes this cloud to quickly drift into the potential well. In this way degradation of
spatial and spectral resolution is minimized. A second cause of degradation of spatial and
spectral resolution is charge loss when X-ray photons are absorbed at the boundary of two or
more pixels, since charge splitting between these pixels will occur. This problem can be dealt
with later in the image processing, provided no charge loss occurs due to a recombination
process (e.g. near a highly-doped stop-diffusion).

X-ray CCDs require a very high CTE value (CTI = 10=° — 107%) to retain the intrinsic,
quantum noise dominated, spectral resolution. Moreover, the CCD needs to be cooled to an
operating temperature of about 200 K to reduce the influence of several noise sources (thermal
noise, read-out noise).
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Chapter 12

Fitting observed data

In this chapter we discuss how one can describe observations, and how one can compare
measurements with model predictions.

We first introduce discrimination between systematic and random errors, and show how the
most common distribution functions for random errors are most effectively computed, followed
by a discussion of error propagation. Next, we discuss the criteria that should be used to decide
which fit of a data set is considered to be best, for the case where the errors are distributed
according to a Gaussian distribution, and for the case where they are Poissonian. We describe
fitting procedures specific for the least squares criterion, both for the linear and the non-linear
case. Finally, we discuss fitting procedures which are more generic, that may be applied both
to least squares and to the case where the errors follow a Poissonian distribution.

12.1 Errors

12.1.1 Accuracy versus precision

We may discriminate between the accuracy and the precision of an experiment. The accuracy
of an experiment is a measure of how close the result of an experiment comes to the true value.
Therefore, it is a measure of the correctness of the result. The precision of an experiment
is a measure of how exactly the result is determined, without reference to what that result
means. It is also a measure of how reproducible the result is. The absolute precision indicates
the magnitude of the uncertainty in the result in the same units as the result. The relative
precision indicates the uncertainty in terms of a fraction of the value of the result.

It is obvious that accuracy and precision need to be considered simultaneously for any exper-
iment. It would be a waste of time to determine a result with high precision if we knew the
result would be highly inaccurate. Conversely, a result cannot be considered to be accurate
if the precision is low. The accuracy of an experiment as defined here generally depends on
how well one can control or compensate for systematic errors. These are the errors which will
make a result differ from the true value with reproducible discrepancy. The precision of an
experiment is dependent on how well one can overcome or analyse random errors. These are
the fluctuations in observations which yield results that differ from experiment to experiment
and that require repeated trials to yield precise results. A given accuracy implies a precision
at least as good and, consequently, depends to some extent on the random errors also. So we
discriminate between:

e A systematic error: reproducible inaccuracy introduced by faulty equipment, calibra-
tion, or technique.
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e A random error: Indefiniteness of result due to the a priori finite precision of an exper-
iment. Also: measure of the fluctuation in a result after repeated experimentation.

In Chapter 3, section 2, of the OAF1 lecture series we have introduced the subject of random
phenomena and variables that constitutes the mathematical basis for handling random errors.
If an infinite number of measurements could be taken, the result would give the way in which
the observed data points are distributed, i.e. the true probability distribution. This distri-
bution is referred to as the parent distribution, any practical measurement can be perceived
as a sample of an infinite number of possible measurements. Consequently the experimental
data only allow an estimate of the parameters that describe the parent distribution. For a
description of the most common probability distributions we refer here to OAF1-section 3.2.
For convenience we only repeat here the definition of the sample parameters which can be de-
rived from a limited number of available measurements to approximate the parameter values
describing the underlying parent distribution.

For the average we have:

1 N
LT NZQ:Z- (12.1)
i=1

and for the variance:

1 N

1 N
2 L2 2 2 —2
0t st = ZEZI(:L“Z —T) = I (;1 z;°— NT > (12.2)

In estimating the average with Eq.12.1 we assume that all measurements z; are indepen-
dent. In estimating the variance with Eq. 12.2 we note that we already have used the x; values
to estimate the average, which implies that we have N — 1 independent measurements left.
(If we know N — 1 values of z; and Z, we can determine the one remaining x;.) This is the
reason that the sum of (z; — 7)? is divided by N — 1 (instead of by N). Indeed, if we only
have one measurement, i.e. N = 1, then the best value for the average is given by this one
measurement, but we have no measure for the variance.

Take T as a variable in Eq.12.2; to find the value of Z for which s? is minimal, we set the
derivative of s? with respect to T to zero:

0s? 2 J _ —2 a _
%_ﬁizl(xi_:ﬁ)_ﬁ (;ffi—NfE> =0 (12.3)

From the last two terms we obtain once more Eq. 12.1. This shows that the definition Eq. 12.1
for the sample average minimizes the sample variance given by Eq. 12.2.

When the measurements are binned, as is always the case if we have digital measurements
but also often in other cases, we find the average and its variance from the binned data. We
write the number of bins as B, and denote the value of z in bin b as z; and the number of mea-
surements in that bin as Ny, where b =1,..., B. We normalize the number of measurements
in each bin on the total number of measurements, to find the probability that a measurement
from the sample falls in bin b as P, = N,/ Zle Ny, and rewrite Eqgs. 12.1,12.2 as

B
T=)Y P (12.4)
b=1
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and
N 2 2
2 —
§8° = 1 (bg lexb T > (12.5)

Higher order moments of distributions with points far from the average (‘outliers’) are
very sensitive to outliers: a large z; — T value dominates much more in the distribution of the
(z; — T)?’s than in the distribution of |z; — Z|s.

For an analogous reason, it is strongly recommended never to use even higher moments,
such as the third order moment or skewness and the fourth order moment or kurtosis. For
completeness, here are the definitions of these moments:

_ 1 —3
Skewness = Nod Z($l — ) (12.6)

and 1
P — § —\4
Kurtosis = W (:Ez — :E) -3 (127)

where o is the standard deviation. The subtraction of 3 in the kurtosis is made so that the
kurtosis of a Gauss distribution is zero.

In this course we shall stick to the common practice of mainly using the variance.

First of all, we shall show now how the various probability distributions can be computed
most effectively.

12.1.2 Computing the various distributions

In the bad old days, one was forced to use tables in thick, heavy books whenever one used the
distributions described above. Nowadays, fast computers allow us to compute the quantities
we need, with relative ease. Chapter 6 of Numerical recipes (2nd edition) contains everything
we need, and more. ..

We start with the factorials, necessary in calculations with binomial and Poisson function.
We first define the gamma function

[(z) = /Ooo t* e tdt (12.8)

and then note that for integer z, the gamma function equals the factorial, with an offset of
one in the argument:

nl=T(n+1) (12.9)

For small values of n, the factorial can be computed directly as n x (n—1) x (n—2)...; for
large values we can use the gamma-function. For large n there is the danger that the factorial
is larger than the largest number allowed by the computer. In that case it is better to calculate
the logarithm of the factorial (or equivalently, the logarithm of the gamma function).

These considerations are taken into account in the following useful function routines from
Numerical Recipes:

e function gammln(x) returns InT'(x) for input z
e function factrl(n) returns real n! for input integer n

e function factln(n) returns real Inn! for input integer n

n . .
e function bico(n,k) returns real ( ) for integer inputs n, k

k
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These routines enable us to compute binomial and Poisson probabilities.
A useful quantity is the cumulative Poisson probability, the probability that a Poisson
process will lead to a result between 0 and k£ — 1 inclusive:

k-1
Py(< k) =" Pp(k,x)
n=0
For its computation we use the incomplete gamma function:

Pa,z) =

mt“_l —tdt 12.10
F(a)/o ¢ (12.10)

Its complement is also called the incomplete gamma function (which is somewhat confus-
ing...):

Q(a,z) =1— P(a,z) = Fga) /;o t* e tdt (12.11)

It is easily shown that the cumulative Poisson probability is given by (the second type of) the
incomplete gamma function:

Py(< k) = Q(k,z)
The corresponding routines in Numerical Recipes are:
e function gammp(a,x) returns P(a,z) for input a,x
e function gammq(a,x) returns Q(a,z) for input a,z

Finally, we look at the integral probability of the Gauss function, which can be computed
from the error function:

erf(z) = % /Ox e dt (12.12)

Equally useful is the complementary error function
fo(z) = — /oo i (12.13)
erfc(x) = — e .
VT Ja

The wonderfull fact is that we don’t have to write a new routine to compute the error functions,
because they are given by the incomplete gamma functions:

erf(z) = P(1/2,2%) (2 >0)
erfc(z) = Q(1/2,z?) (x> 0)
The corresponding routines in Numerical Recipes are:
e function erf (x) returns erf(z) for input z, using gammp
e function erfc(x) returns erfc(z) for input z, using gammq

e function erfcc(x) which returns erfc(z) based on a direct series development of 12.13.
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12.2 Error propagation

Suppose we have a function f of a number of variables u, v, .. .:

f=fluyv,...) (12.14)
We want to know how we can estimate the variance of f,
1
2 _ 2
= lim — ;— 12.1
7 = NS N ;(f’ 7) (12.15)
from the variances oy, 0y, ... of the variables u, v, .... To derive this we will make the assump-

tion, which is usually only approximately correct, that the average of f is well approximated
by the value of f for the averages of the variables:

f=f@mv,...) (12.16)
We make a Rayleigh-Taylor expansion of f around the average:
— 0 0
fim T -2 w02 o (12.17)
ou ov

. 1 Y af of 2
2~ = R AT R A
o~ lim ;Zl [(uZ u)(?u + (v v)av +...

= lim ii l(ui —1)? (%)2 + (v; = D)? (%)2 +2(u; — @) (v; —6)2—2% +]

Nvoo N i
(12.18)
We rewrite this by using the definitions for the variances of 4 and v,
1Y 1 g
0.2 = A}i_r}nooﬁg(ui —-w)? ol = A}i_r)llooﬁg(vi —7)? (12.19)
and defining the covariance of u and v as
1
Ou’ = Jim ;(ui — ) (v; — D) (12.20)
to obtain: ) )
o =0, <%> + 0,2 <%> + 2auv2%% +... (12.21)

If the differences u; — @ and v; — T are not correlated, the sign of their product is as often
positive as negative, and the sum in eq.12.20 will be small as subsequent terms (almost)
cancel. On the other hand, if the differences are correlated, most products (u; — @) (v; — 7)
will be positive, and the cross-correlation term in Eq. 12.21 can be large as subsequent terms
add up.
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12.2.1 Examples of error propagation
weighted sum: [ = au+ v

For the partial derivatives we have

of _ of _

= =b 12.22
u_ © v ( )

and substituting these in eq. 12.21 we obtain
0’f2 = a%0,% 4 b20,% + 2aboy,’ (12.23)

Note that a and b can each have positive or negative sign. Their signs only have an effect
on the cross-correlation term, which as a consequence can be negative, and make the variance
smaller! For example, if each w; is accompanied by a v; such that v; — 7 = —(b/a)(u,, — 1),
then f = aw + bv for all u;, v; pairs, and af2 = 0.

product: f = auv

With 3 5
8_£ — . a_i — au (12.24)
we obtain ) ) ) )
oy ou Oy 2050
—_ =+ — 12.25
12 u? * v2 uv ( )
division: f = au/v
of a of au
-z - = _ 12.26
ou v’ ov v? ( )
hence ) ) ) )
of ou Oy 2050
- -2 4 7Y 12.27
12 u? * v2 uv ( )
exponent: f = ae’
of
- —p 12.2
v (12.28)
hence -
L = bo, (12.29)
f
power: f = au®
of _bf
2L _ L 12.
ou U (12.30)
hence o o
L =p= 12.31
L =2 (12.31)
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12.3 Errors distributed as a Gaussian and the least squares
method

Suppose we have a series of measurements y; with associated errors distributed according to
a Gaussian with width o;, i.e. each measurement is drawn from a Gaussian with width o;
around a model value y,,. For one measurement, the probability P(y;) = P; of obtaining a
measurement g;, in an interval Ay, is then given by

1 —(y;—ym)>

e 27 A 12.32
oo y ( )

where we allow that different measurements have different associated errors o;. If we have a
series of N measurements the overall probability of obtaining such a series is:

PAy =

N N 2
1 1 (Yi — Ym) N
PAy)Y =T[(PAY) = ——75—=— oy A 12.33
( y) lzl—II( 1 y) (27T)N/2 Hz o exp [ 9 ; Ui2 Yy ( )
The highest probability P is that for which
2 al 2 a (yi — ym)?
XEZkiEZ—ig—‘ (12.34)
=1 =1

is smallest. If we wish to determine the most probable model value for y,, for a series of
measurements y;, we thus must find the value(s) for y,, for which the sum of the squares
(yi — ym)?/o;? is minimal. This is called the method of least squares and was described first
in 1804 by Gauss, following earlier work by Lagrange and Laplace.

According to the assumption that the errors are gaussian, as stipulated above, each y; is
a random draw from a normal distribution; the sum of the ;2 is called chi-square. If we have
N measurements, and we fit M parameters, we have N — M independent measurements left.
The probability distribution for x? is called the chi-square distribution for N — M degrees
of freedom. This distribution is what we get if would draw N — M random samples from a
normal distribution, square them, and add the squares, and repeat this many times, each time
producing one y2. The probability of a given x? can be computed with the gammg-function,
as follows: the probability that an observed X(Q)bs or greater is reached for N — M degrees of
freedom is P(x?%,,) = gammq(0.5(N — M), 0.5x%,,). If the probability that we get is very small,
then something is wrong. The most obvious possibility is that the model is wrong. Another
possibility is that the errors have been under-estimated, so that we demand a better agreement
with the model than the measurement accuracy warrants. A third possibility is that the errors
are not distributed as Gaussians. This latter possibility tends to increase the observed x?; and
often causes us to accept probabilities somewhat lower than one would superficially expect.
Thus in many cases, a probability of 0.05 is considered quite acceptable. The reason one
can do this, is that really wrong models easily produce much smaller probabilities, less than
0.000001, say. Also, even in a perfect statistical process, a probability of 5% arises on average
once every 20 trials, so that finding such a probability due to chance is quite common. If one
finds in a certain experiment that one always produces low probabilities, one must look into
it and try to determine the cause.

It is worth noting that apparently significant results can arise from ignoring negative
results. The most obvious case is the winning of a lottery. Suppose the winner is the person
who has guessed the correct six-digit number. The probability for one person to have the
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winning number is one in a million, but if several million people participate we expect several
to have guessed the correct number. A less obvious case is an experiment which is repeated
many times. A well-known case here is the stock-broker. Suppose that one starts with ten
million people, who predict how stocks change in value. After a year, select the people who
are among the ten best predictors; repeat this five times (so that six rounds have been made),
then there will be (on average) ten stock brokers who have predicted among the best 10%
for six years in a row, if the prediction process is purely random! It is thus by no means
obvious that a stock-broker who has predicted correctly for many years in a row is better
than random — one can only find out if one knows how many stock-brokers there are....
(Indeed, in experiments in which a gorilla selects the stocks, the gorilla often doesn’t do bad
at all.)

When we make a fit of a model to a dataset, the result should always consist of three
parts:

1. the best values of the parameters ay,as, ...
2. the errors on these parameter values

3. the probability that the measured x? is obtained by chance; i.e. the probability that the
model adequately describes the measurements

It is very important always to provide all these three desiderata.

We will discuss three cases for y,,, viz. i) a constant, in which y,, is the same for all i; ii)
a straight line y,,, = a + bz where y,,, depends on the variable x and the model parameters a
and b; and iii) the general case in which y,, depends on a variable 2 and a set of parameters
ai,ag, ..., which we write as y,, = ym(z;a).

12.3.1 Weighted averages

If the model for y,,, = a is the same for all measurements, then the constant a is the (best
estimate for the) average gy of the y;’s. The least squares method tells us that we find the
most probable value for ¢ by minimizing eq. 12.34 with respect to a, i.e.

’ [i iz o) _ga)Q] 0= i it o (12.35)
=1

oa =~ o o;2

Thus the least squares are found for

N i

_ Die1 (}yiz
Y=0min = =N 1 (12.36)

Zlil g'iz
To obtain an estimate of the error in 7, we note that 7 is a function of the variables
Y1,Y2, ... If the measurements y; are not correlated, we find the variance for § from (see

eq.12.21):

i=1 =1

N a7\ 2 N 1/0? ?
=3 () |- % [ (s imm) } 1240
which gives
07 = SN 2 (12.38)



In the case where all measurement errors are identical, o; = o, eqgs. 12.36,12.38 can be
further simplified to

__ )Ty 1
e ) - N &Y
and )
og? = % (12.40)
12.3.2 Fitting a straight line
We write the model of a straight line as
Ym(x,a,b) = a + bx = yp(z;,a,b) = a + bz; (12.41)

where the parameters to be fitted are a and b. We now wish to minimize the y?, according
to Eq.12.34, with respect to ¢ and b, and do this by looking for the values for which the
derivative of x? is zero:

OX N (yi —a—bx;)/o;)? Ny —a— b Yoy A | A

da i=1 Ui2 =1 i 1=1 UiQ

(12.42)

0%ty — a—bzi) /ol _ f; Zilyi — - ) g g: ' ) g 3 9”_2 =0
ob i=1 Ti i=1 7 i=1 71 =1 0

(12.43)

The important thing to note now is that all the sums can be evaluated without knowledge of
a or b. To make the equations easier to interpret we define the sums as

S = =8y S =Sy A =58, —(S:)?
=1 j

o;
and rewrite the above two equations as two equations for two unknowns a and b:
aS +bS; — Sy, =0
aSz +bSyz — Spy =0

with the solutions S ¢ &g
_ PrxPy — PaPry 12.44
a K (12.4)
885y — S5y
N A
To find the errors in a and b, we note that a and b depend on the independent parameters y;,

such that

b (12.45)

oa Sepw — TiSs ob ;S — S
da _ . 9 T T 12.4
Oy o?A yi 0i?A (12.46)
and use Eq. 12.21 to obtain (after some rewriting)
S S
O'a2 = T, 0'[;2 = K (1247)
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Figure 12.1: Total number of 1st-year students in the Netherlands in physics and astronomy
(above) and in astronomy only (below) between 1990 and 2000. Assumed poissonian errors
are indicated. Data taken from the Nederlands Tijdschrift voor Natuuurkunde, which stopped
publishing these numbers in 2000. . .

As the third ingredient of our fit we determine the probability that a good fit would
produce the observed x?,,, or bigger as

N —2 y?
Q = gammq (—2  Kohs 2"b5> (12.48)

As an illustration of some more subtleties we have a look at Figure 12.1, where the number
of new physics and astronomy students in the Netherlands are plotted for the last decade of
the 20st century. The first point concerns the errors in measured integer numbers. It is
assumed in the figure that the error on the number of students is given by the square root of
the number, and these errors are shown. The reader may be surprised now, and say: "Why
is there an error? After all, we know exactly how many students there are in a given year!’.
The answer is that for the purpose of fitting a model the numbers of students can vary due
to chance, and that the actual number in a year is drawn from a distribution (poissonian in
this case) around the expected value. Similarly, if an X-ray experiment detects N photons in
a given time interval, in a given energy range, then the error that we assign to this number
when we fit it in a model is not zero — even though we know exactly how many photons were
measured!

The second point concerns a good choice of ¢ and b. If we fit the number of students
as N(t) = a + bt where ¢ is the year, then a gives the number of students for the year 0.
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Apart from the fact that this number is meaningless in the current context, there are two
other problems associated with this choice. The first one is that the sums involving z;-values
in Eqgs. 12.44-12.47 are very large numbers, so that subtracting them from one another (as
in computing A) easily leads to roundoff errors, and thus to wrong results. The second one
is that in this choice of ¢ and b there will be a very strong correlation between the errors:
if we change b a little, a changes dramatically in one direction. Both these problems can
be circumvented by centering the time interval around the point of fitting, i.e. by effectively
fitting N = a + b(t — 1994). Now, the sums involve smaller numbers, and the pivot point
around which ¢ and b vary is such that the correlation of their variations are minimized.

Also for non-linear fits, it is good practice in astronomy to define the time with respect to
some fiducial point somewhere near the middle of the measurements.

12.3.3 Non-linear models: Levenberg-Marquardt

When our model involves a parameter a which enters the y,,, and through this the y;, non-
linearly, we cannot execute a summation without having (an estimate for) the value of a. As
an example, consider the function y = sin(az), which has (see Eq.12.34)

2 N b _
X" _ —2%" lyi — sin(ax;)]z; cos(ax;)

= = (12.49)

i=1
and we see that the summation cannot be executed without a value for a.

In general, this means that a model y(z,a@) which is non-linear in @ can be fitted to a set
of data only iteratively, in the sense that one needs a first set of values for @, and then finds
successive improvements of these values.

To understand how this is done, we discuss first a one-dimensional case where there is one
parameter a that is fitted, so that x? = x?(a). We are then looking for the value of a for
which x?(a) is minimized.

When one is far from the minimum, we can use the derivative dx2/da to decide in which
direction to look for the improved value:

2
Upt1 = Gp — % (12.50)
where K is a constant (the value of which we discuss below).

Once we get close to the minimum of x?, this way of stepping towards a better solution
becomes less efficient, since near the minimum the first derivative approaches zero. Close to
the minimum we approximate x? as a quadratic function of a: x%(a) = p + q(a — amin)?,
where p is the minimum value of x?, reached at a = a,,;,. We combine the derivatives
0x?/0a = 2q(a — amin) and 0*x%0a® = 2q, to write:

0x?/0a 0x?/0a
X / = Qp41 = Gp — X /
92x2/0a? 92x2/0a?
Now make the step to a more-dimensional case, i.e. with more than one parameter, and
write

(12.51)

a4 — Omin =

1. =
x2(d) ~p—q-d+5a-D-d (12.52)
where for model y,,, = yn, (x,d) we have:
aX2 Y [yz - ym] OYm
= =-2 S et =2 12.53
%= o ; o2 day Br (12.53)



and

X’ — =1 OYm OYm Pym |
OapOa; 22 S~ Vi —yml | =20k (12.54)

Dy = —
M 02 | day, Oa; Oay0ay

i=1
The second term on the right hand side is expected to be small with respect to the first

one, because y; — y,, will almost equally often be positive as negative, and subsequent terms

in the summation will almost cancel. To save computing time, one can drop the second term.

It often turns out that the iteration to the best solution becomes more stable by doing this.
For the more dimensional case we can write for Eqs. 12.50,12.51:

,Bk = Aakkéak (12.55)

M
,Bk = Zakléal (12.56)
=1
Here we have chosen to scale the proportionality constant K in Eq.12.50 with the second
derivative, where A is a constant.
The Levenberg-Marquardt method now continues by adding the two last equations:

M
Br = Zaﬁdéal where Ay =an (fk#£1D); ay=a(l+N) (fk=1) (12.57)
=1

For large \ Eq. 12.57 approaches Eq. 12.55, and for small A it approaches Eq. 12.56.

The solution of the equation then proceeds as follows. One picks an initial solution, and
a small value for A (i.e. one hopes that the solution is already close enough for the quadratic
approximation). Compute the x? for the initial solution, and compute a new value for @ with
Eq.12.57. If the x? for the new solution is smaller (larger) than for the old one, then the
quadratic approach does (doesn’t) work, and one should decrease (increase) A to get closer to
the purely quadratic (linear) method of Eq.12.56 (12.55). This process is iterated until the
minimum x? is found.

We also need the errors on the best parameters d. For this we use the general relation
(near minimum)
- 0d (12.58)

Qul

0x2 = 6d -

If the best values of the parameters are not correlated, then the matrix « is close to diagonal,
i.e. the off-diagonal elements «aj; are much smaller than the elements ag, on the diagonal. In
that case the inverse matrix C' is almost given by Cyr = 1/ay, and the distance day to the
best value a; has ,
fap? = X (12.59)
(87593
Thus to estimate a 1-sigma error in a; we enter Ay? =1 in Eq. 12.59.
When the errors are correlated, the situation is more complex, and the matrix C' gives the
correlation between the deviations of the parameters from their best values. For details we
refer to Numerical Recipes, Press et al. (1992).

12.3.4 Optimal extraction of a spectrum

For this topic we refer to the article by Horne (1985).

263



12.4 Errors distributed according to a Poisson distribution
and Maximum likelihood

In measurements in which a small number of events is counted, we are often dealing with
a distribution of the measurements which is given by the Poisson distribution. In this case,
the least-squares methods do not apply. We will discuss the maximum-likelihood method for
errors with a Poissonian distribution. In the literature, this method is often referred to as
the mazimum-likelihood method, where the Poissonian error distribution is implied. We will
follow this practice, but only after noting that this abbreviated name is misleading, in that
the least-squares method is also a maximum-likelihood method, viz. the maximum-likelihood
method for errors distributed as Gaussians!

To illustrate the maximum-likelihood method we consider the number of counts on a
photon-counting detector. We write the number of counts detected in location ¢ as n;, and
the number of counts predicted for that location by the model as m;. The probability at one
location to obtain n; photons when m,; are predicted is

P, = B (12.60)
If the values of m; (and n;) are large, this probability may be approximated with a Gaus-
sian, and one may use a least-squares method. Typically, a value of 20 is used. This value
is based on the assumption that the difference between the Poisson and Gaussian distribu-
tions for large p is less important than the uncertainties due to systematic effects in the
measurements. In principle, this assumption should be verified in each case.
For small values of m; (and n;) we proceed to use the Possion distribution. To maximize
the overall probability we thus have to maximize

r'=][r (12.61)

and for computational ease we maximize the logarithm of this quantity
lnL'EZlnPi:Znilnmi—Zmi—Zlnni! (12.62)

The last term in this equation doesn’t depend on the assumed model, and thus — in terms of
selecting the best model — may be considered as a constant. Thus maximizing L’ is equivalent
to minimizing L, where

InL = -2 (Z n; lnm; — Zml> (12.63)
i 7

If one compares two models A and B, with number of fitted parameters n4 and ng and
with likelihoods of In L4 and In Lg, respectively, the difference AL = InLy4 —InLp is a x?
distribution with n4 —np degrees of freedom, for a sufficient number of photons [Cash (1979);
Mattox et al. (1996)].

12.4.1 A constant background

As a first example we model a constant background: m; = A. With Z pixels we thus have a
total number of photons in the model N,, = ZA; write the total observed number of photons
as N, Inserting this in eq. 12.63 we have

—05InL=> nilnA—-> A=N,InA—ZA=NyIn(Ny/Z) — Ny, (12.64)
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and we have to minimize this with respect to N,,. Thus

81nL_0:> N, B B
ON,, N, o

(12.65)

and we see that the best solution, as expected, is the one in which the number of photons in
the model equals that in the observation.

12.4.2 Constant background plus one source

Let us now assume that we have a source with strength B, and that a fraction f; of this lands
on pixel 7. Eq. 12.63 now becomes

—05InL=> niIn(A+Bf;) = > (A+ Bf) (12.66)
We search the minimum of L for variations in A and B:

(9IDL ng

alnL

zfz nzfz .
ZAJFBfl zi:fz ZA+Bf 1=0 (12.68)

We thus have two equations for the two unknowns A and B. Multiply the first equation with
A, the second with B, and add the two equations to find

> ni=AZ+B (12.69)

i.e. the total number of counts in the best model is equal to the total number of observed
counts. This condition may be used so that one only has to fit one, rather than two parameters.

12.5 General Methods

To produce the best fit for the case of Poissonian errors, several methods are available, of
which we discuss a few. The methods are distinct from the methods discussed above for the
least-squares cases, in that they do not use the derivative of the function, but only the function
value itself, together with the criterion of best fit. These methods are equally suited for least-
squares problems, with Eq.12.34 as the criterion, and for maximum-likelihood problems with
Poisson statistics, where Eq. 12.63 must be minimized. For simple problems, these methods
tend to be slower in converging on a good solution than the Levenberg-Marquardt method.
For problems with many variables, where the matrix a (Eq. 12.54) becomes very big, and for
problems in which the y? distribution has many local minima, the methods discussed below
are actually more efficient than the Levenberg-Marquardt method. An example is the fit to
the lightcurves (in U,B,V’) and radial velocities of a binary: this problem has many variables,
and can have many local minima.

12.5.1 Amoebe
See Numerical Recipes, Press et al. (1992), chapter 10.4.
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12.5.2 Genetic algorithms

For an explanation of the principle of genetic algorithms we refer to Charbonneau (1995).
An interesting extension is the use of black sheep, i.e. bad descendents from good parents,
in the genetic algorithm scheme. This is treated by Bobinger (2000).

12.6 Exercises

Problem 1. Calculate the average and the variance of the Gauss function.

Problem 2. Show that erf(z) = P(1/2,2?).

Problem 3. z = aln(+bu). Give the relation between o, and o,,.

Computer Problem 1. Write a fortran program which computes
a. the binomial probability for given k, n, p.

b. the Poisson probability for given k, u.

c. the Gauss function for given z, u, o.

To check your program, verify the following statements:

a. if one throws 10 dice, the probability that precisely 7 three’s are up is 2.48 x 1074,

b. if the expected number of arriving counts is 15, the probability of measuring 30 counts is
2.21 x 1074, the probability of measuring 0 counts is 3.06 x 107",

c. if one estimates the probabilities calculated in b) by approximating the Poisson function
with a Gaussian, one finds 5.70 x 10~° for both.

Computer Problem 2. Compute erf(z) for z = 1, 3, 5, 10.

Computer Problem 3. Reproduce (the dots in) Figure ??.

Reading task 1. Read chapters 6.1 and 6.2 of Numerical Recipes with care, and have a
look at the fortran functions described in there.

Problem 4. Radiopulsar PSR J 1713 4 0747 has an observed period P = 4.5701 x 1073 s
and period derivative P = 8.52 x 1072, both with (for the purpose of this problem) negligible
errors. Two components of its proper motion p have been measured as p, = 4.9 £ 0.3 mas/yr
and ps = —4.1 £ 1.0 mas/yr; its distance is estimated from the dispersion measure as d =
1.1 £ 0.3kpc.

As noted by Shklovskii, the ratio P/ P must be corrected for the apparent acceleration
due to the proper motion, so that the intrinsic ratio is:

P P p2d
S 12.
<P>i 5T (12.70)

The (intrinsic) spindown age of a radio pulsar is

P
i = <2P>i (12.71)

Calculate the intrinsic spindown age and its error.

Computer Problem 4. Via computer you obtain a list of dates and logarithms of bolo-
metric fluxes for supernova SN1987A. The errors in log L, due to uncertainty in photometry
are 0.003 until day 455, 0.005 until day 526, 0.02 until day 635, and 0.03 thereafter. Write
a computer code which reads the file, and fits a straight line to the data between a first and
a last day. Calculate dlog Ly /dt and convert the result to a half-life time, for all data after
day 150; and for data between day 150 and 300. Compute the differences between the fit and
the measurements, and plot these for both fits as a funcion of time. What do you learn from
these plots?
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SN 1987A bolometric lightcurve
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Figure 12.2: Lightcurve and fit of the bolometric magnitude of SN 1987A.

Computer Problem 5. Via computer you obtain a list with the ratios of 87 Rb(t) /%6 Sr
and 8787(t) /%Sy, and associated errors, for 26 meteorites. Here ¢ is the time since solidifi-
cation of the parent asteroid from which the meteorites originate. The relation between the
two ratios is given by

87 87 87
Sgr(t) _ Sr(0) N (e)‘t B 1) Rb(t)
Sr 865y 865y

From the obervations we can determine ¢ by inference the age of the solar system. There are
some subtleties, however:
a. Which of the two quantities has the smallest errors? Rewrite Eq.12.72 in a form suitable
for fitting a straight line.
b. Fit a straight line to all points, and make a plot of the fit, and of the differences between
fit and observations, in terms of x = (y; — ym)/oi Where i refers to the observation number,
and m to the model fit.
c. Why are some points far from the fit? Remove the worst points one by one, until you get
an acceptable probability.

(12.72)

267



Computer Problem 6. Via computer you obtain a list with fluxes as a function of
wavelength for the Mg IT 2800 line in a cataclysmic variable.
a. Read the file, make a plot of flux as a function of wavelength, and fit a straight line to all
the data.
b. Now write a subroutine for use in MRQMIN which computes the function values and their
derivatives, for a straight line plus a Gaussian line.
c. Estimate initial values for the best parameters, and apply the routine from b) to make a
fit of the data.
d. Compare the x? from a) and c) to decide whether the addition of the line improves the fit
significantly.
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Chapter 13

Looking for variability and
periodicity

This chapter provides a brief first guide on how one decides whether a time series of N
measurements y; with errors o; at times ¢; shows significant variability, and how one searches
for periodicity in the variation. This chapter is mainly descriptive, and many results are given
without proof (but with appropriate references).

A first indication may be found by testing the hypothesis that the source is constant. The
best guess for this constant is (in the case of Gaussian errors) given by Eq.12.36. Compute
the chi-squared for this average with Eq.12.34, and the probability that this chi-squared is
obtained by chance, from P(x%, = gammq((N — 1)/2,x2,,/2). If this probability is high, it
depends on the quality and length of the time series whether one stops here. To understand
this, we do a thought experiment with a series of N measurements y;, all drawn from a
Gaussian distribution around a constant value, all with the same error o. Thus, the observed
chi-squared is due to chance. Now, order the measurements, so that yy > yy_1 > ...y2 > y1.
The time series thus obtained has the same chi-squared, but clearly cannot be obtained by
chance: however, its significant increase of y; with time is not uncovered by the chi-squared
test. As a second example, take the same series y; for the case that the measurements are
made at equidistant time intervals: t; = ¢ x At. Now order the y; so that the higher values
are assigned to t; with even ¢ and the lower values to t; with odd 7. Again, the significant
periodicity present in the re-ordered data is not uncovered by the chi-squared test. If the
time series is long enough, we can uncover the significant variability from other tests. In our
thought experiments, on could for example try a Kolmogorov-Smirnov test for the first case
(see Sect. 13.3), and a Fourier transform for the second case (see Sect. 13.4).

In general, the level of sophistication that is appropriate increases when the measurement
series is larger and of higher quality.

13.1 Fitting sine-functions: Lomb-Scargle

As a first example, we look at the data obtained by the Hipparcos satellite on the pulsational
variable W UMa (Fig. 13.1). It is clear from the range of variation as compared to the size of
the error bars that this source is significantly variable. Due to the observing method of the
satellite, the data are taken at irregular intervals. For such data, one method to search for
periodicity is to fit a (co)sine curve:

Vi, = acos(wt — ¢,) = Acoswt + Bsinwt (13.1)
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Figure 13.1: Magnitudes of eclipsing binaries W UMa (above; 117 points) and TV Cas (below,
133 points) as measured with Hipparcos, in order of observation date (left) and after folding
on the orbital period (right; the zero-phase and orbital period are indicated in days).

where A and B are related to a and ¢, as

a’ = A? + B% tamqbo:E

A

One can look for the best values for a, ¢, and w = 27/P by minimizing the sum of the

chi-squares. In principle, one could use one of the methods we discussed in the previous

chapter, but a more specialized method, developed for this specific problem, is more efficient.

First suggested by Lomb (1976), it was successively improved by Scargle (1982), Horne &

Baliunas (1986), and Press & Rybicki (1989), and is described in Numerical Recipes, Press et

al. (1992), Ch.13.8.

In the case of W UMa, the folded lightcurve is roughly sinusoidal, and the Lomb-Scargle

method (as it is commonly called) may be expected to work well.

(13.2)

271



In some cases, the lightcurve is (close to) a sine function with two maxima and two minima
at each orbital period. In such a case, it is sometimes difficult to decide whether the real period
is the one found, or twice as long. For example, contact binaries (also called W UMa variables)
often have two almost equal minima per orbital period (Fig. 13.1). Depending on the quality
of the data one may or may not find a significant difference between the two minima. In
such a case, additional knowledge (‘W UMa systems have two minima and two maxima in
each orbit’) must decide whether the period coming out of the Lomb-Scargle test is the actual
period, or half of it.

13.2 Period-folding: Stellingwerf

In the case of TV Cas, the folded light curve is very different from a sine. Omne therefore
expects that the Lomb-Scargle method may not be optimally efficient in finding the period.
Stellingwerf (1978) has developed a method which works for lightcurves of arbitrary forms.
The basic idea is as follows. Fold the data on a trial period to produce a folded lightcurve.
Divide the folded lightcurve, in M bins. If the period is (almost) correct, the variance s;?
inside each bin j € 1, Mis small; if the period is wrong, the variance in each bin is almost the
same as the total variance. The best period has the lowest value for Ej]vil 5j2.

Stellingwerf discusses how many periods one should take, in which interval, and how many
bins, etc., as derived from the data set itself. In other cases, one may have other information
which may help in selecting a period range, for example when one knows that the star is a
0 Cepheid variable with a known approximate absolute magnitude.

In general, both with the Lomb-Scargle and with the Stellingwerf method, one must ask the
question what the probability is that the result obtained is due to chance. Analytic derivation
of this probability is fraught with difficulties, and often the safest estimate is obtained by
simulations. For example, if one has N measurements y; at ¢;, one can scramble the data
and apply the Lomb-Scargle or Stellingwerf method. The scrambled data should not have a
periodicity. Therefore, by perfoming many scrambles, one can find out what the distribution
of significances is that arises due to chance, and thereby what the probability is that the
period obtained from the actual data is due to chance. This probability is often referred to
as the false-alarm probability.

13.3 Variability through Kolmogorov-Smirnov tests

Data may be variable without strict periodicity. Consider a detector which is open for T
seconds and in this period detects N photons. If the interval is divided in M bins of equal
length T'/(M — 1), then for a constant source, each bin should contain n = N/(M — 1)
photons, and one can do chi-squared or maximum-likelihood test that the observed numbers
nj,(j € 1,M) differ significantly from this. The problem with this approach is that the
number of bins that one loses information by binning, and that the result depends on the
number of bins chosen.

The Kolmogorov-Smirnov test (shorthand: KS-test) test avoids these problems. The KS-
test in general computes the probability that two distributions are the same; or phrased
differently, the probability that two distributions have been drawn from the same parent
distribution. The one-sided KS-test compares a theoretical distribution (which has no errors
associated to it) with the observed distribution. The two-sided KS-test compared two observed
distributions, each of which has errors.
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N(<t)/N

Figure 13.2: [llustration of the Kolmogorov-
Smirnov test for variability of an assumed con-
stant source. The largest difference d between
the theoretical straight line and the actually ob-
served histogram is a measure of the probability
that the variability is due to chance.

In a search for variability, the assumption for a constant source is that the expected
number of photons detected (or the integrated flux received) increases linearly with time.
Normalize the total number N of detected photons to 1. The theoretical expectation is that
the normalized number of photons N (< t) that arrive before time ¢ increases linearly with
t from 0 at £ = 0 to 1 at £ = T. The observed distribution is a histogram which starts at
0 for t = 0, and increases with 1/N at each time ¢;,4 € 1, N that a photon arrives. This
is illustrated in Figure13.2. Now determine the largest difference d between the theoretical
curve and the observed curve. The KS-test gives the probability that a difference d or larger
arises in a sample of N photons due to chance. It takes into account that for large N one
expects any d arising due to chance to be smaller than in a small sample.

The Kolmogorov-Smirnov test is described in Numerical Recipes, Press et al. (1992),
Chapter 14.3.

13.4 Fourier transforms

The Fourier transform uses the fact that a periodic signal builds up with time to discover a
periodic signal in a long time series, even if the signal is small with respect to the noise level.
It works best in data taken in an un-interrupted series of equidistant intervals, and this is
the case we will discuss here. Our discussion is based on a tutorial by Michiel van der Klis.
Interruptions in the time series, i.e. data gaps, lead to spurious periodicities, and techniques
have been developed to remove these successively, for example ‘cleaning’. This is not dicussed
here.

Mathematically, we can discriminate between the continuous and the discrete Fourier
transforms. In observations, only the discrete transform occurs. To understand some of the
properties of the discrete transform it is useful to compare with the continuous transform.
With ¢ = /—1, the continuous transform a(v) of signal z(t) is given by

00 .
a(v) = / z(t)e* ™ dt for —oco < v < o0 (13.3)
— o0
and the reverse transform
x(t) = / a(u)e*i%”tdu for —oc0o <t < o0 (13.4)
— o0



From this it can be derived that

o 2 > 2
/ x(t) dt = / a(v)“dv (13.5)
—0o0 — 00
The above equations are occasionally written with the cyclic frequency w = 27v.
If we write e??™ as cos(2mvt) + isin(27wvt) in Eq. 13.3, we see that the Fourier transform
gives the correlation between the time series z(t) and a sine (or cosine, see Eq. 13.1) function,
in terms of amplitude and phase at each frequency v.

13.4.1 The discrete Fourier transform

Now consider a series of measurements x(t;) = z, taken at times ¢y where ty, = kT/N with T
the total time during which the N measurements are made. The time step for the xj is dt =
T/N. The discrete Fourier transform is defined at N frequencies v, for j = —N/2,...,N/2—1,
with a frequency step for the a; of ov = 1/T.

The discrete equivalents of the above equations 13.3, 13.4 and 13.5 are

N-1
o N N N N
o i2mjk/N = 4 1....=—_—92__1 13.6
a; kz}owke 7 D) + 1, 5 5 ( )
1 N/2-1 o
o= Z aje2mik/N k=0,1,2,...,N —1 (13.7)
j=—N/2
and
N_1 1 N/2-1
Sl 3l (138)
k=0 Jj=—N/2

The last equation is called Parseval’s theorem. These equations are occasionally also written
in terms of cyclic frequencies w; = 27v;.

The 1/N-term is located here on the right-hand side of Eq.13.7. This is a matter of
convention, and other conventions can be used, and in fact are used in the literature, e.g.
putting the 1/N-term on the right hand side of Eq.13.6, or putting a 1/v/N-term in both
Eqs. 13.6 and 13.7. When reading an article, first find out which convention is used!

In the general definition of the Fourier transforms, both # and a are complex numbers. In
the application we discuss here, the x; are the numbers of photons detected at times ¢;, and
are therefore real. This implies that the amplitude at frequency —j is the complex conjugate
of the amplitude at frequency j, i.e. a_; = a;*, ensuring that the z; found from the complex
aj through Eq. 13.7 are real again. The highest frequency that occurs is vy, = 0.5N, /T it is
called the Nyquist frequency. . Since a_y/s = anys:

N-1 . N—1
a_nj2 = > zpe” ™ = > zp(~1)F = an/2 (13.9)
k=0 k=0

we may list the amplitude at the Nyquist frequency either at the positive or negative end of
the series of a;. Again, it is a matter of convention. The amplitude at zero frequency is the
total number of photons:

N—-1
ao =Y ok = Nigy (13.10)
k=0
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Parseval’s theorem Eq. 13.8 allows us to express the variance of the signal in terms of the
Fourier amplitudes a;:

N-1 , N-1 1 /N1 2 1 N/2-1 1
_ 2 E : 2 2
kE_O (ZU]C - x) = ];_0 T — N (kE_O xk> = N . |aj| — Nao (1311)
= = = j=—N/2

The discrete Fourier transform converts N measurements zj into N/2 complex Fourier
amplitudes a; = a_;*. Each Fourier amplitude has two numbers associated with it, an
amplitude and a phase, a; = |aj|ei¢’f. If the N measurements are uncorrelated, the N numbers
(amplitudes and phases) associated with the N/2 Fourier amplitudes are uncorrelated as well.
Mathematically, this follows from the following Equations (the derivation of which can be
checked with Problem 6.1):

N-1 N-1
Z sinwjk =0, Z coswjk =0 (5 #0) (13.12)
k=0 k=0
N-1 N/2, j=m#0 or N/2
Z coswjkcoswpk =< N, j=m=0 orN/2 (13.13)
k=0 05 J 75 m
N-1
Z cos wjk sinwpyk = 0 (13.14)
k=0
Nz‘:l o dine ke~ N/ G=m#0 or Nj2 (13.15)
prt SIW RSIMEmE =19 ", otherwise '

In searching for a periodic variation, the phase of the variation often is less important
than the period. For this reason, a period search is often based on the power of the Fourier
amplitudes, defined as a series of N/2 numbers, each number being given by

2
Niot

N
la;? = 0,1,2,..., % (13.16)

2
P=Zla.l? =
J ao|ay|

where we have used Eq. 13.10. The series P; is called the power spectrum. By using the power
spectrum, we do not use all available information, in particular we do not use the information
on phases. The normalization of the power spectrum is by convention, and different authors
may use different conventions. In deciding whether a periodicity that one find from the power
spectrum is significant, one should know which convention is used. The convention of Eq. 13.16
is called the Leahy normalization.

Whereas the Fourier amplitudes a; follow the super-position theorem, the Fourier power
spectrum P; does not. Specifically, if a; is the Fourier amplitude of x; and b; the Fourier
amplitude of y, then the Fourier amplitude ¢; of z; = x + y;, is given by ¢; = a; + bj; but
the power spectrum of 2, is |cj|? = |aj + bj|> # |a;|? + |b;|?, the difference being due to the
correlation term a;b;. Only if the two signals z;, and y; are not correlated, then the power of
the combined signal may be approximated with the sum of the powers of the separate signals.

The variance given by Eq.13.11 may be expressed in terms of the powers as

N—1 N N/2—-1 1

— tot
S (zk—7)° = T" ( > P+ 5PN/Q) (13.17)
k=0 j=1

275



In characterizing the variation of a signal one also uses the fractional root-mean-square
variation,

(13.18)

ﬁ
Il

N Tiler —T)? J ST P+ 0.5Py
Ntot

T

13.4.2 From continuous to discrete

Consider a series of measurements xj taken in the time interval between ¢ = 0 and ¢t =T, at
equidistant times 7.

Mathematically, this series can be described in terms of a continuous time series z (), multi-
plied first with a window function

1, 0<t<T
w(t) = { 0, otherwise (13.19)

and then with a sampling function ("Dirac comb’)

=3 5(t—%T) (13.20)

k=—o00

Let a(v) be the continuous Fourier transform of z(¢), and let W (v) and S(v) be the Fourier
transforms of w(t) and s(t), respectively:

2

in(nvT
STV T) | i (T2 (13.21)

00 . 2
|W(y)|25‘ / w(t)eﬂmdt‘ -

—0o0

i.e. the Fourier transform of a window function is (the absolute value of) a sinc-function, and

Sv) = /oo s(t)e 2™t = % i ) <1/ - m%) (13.22)

—© m=—00

i.e. the Fourier Transform of the Dirac comb is also a Dirac comb. Al these transforms are
symmetric around v = 0 by definition.

Now we note that ‘The Fourier Transform of a product is the convolution of the Fouri-
er Transforms’ to understand how the discrete transform derives from the continuous one.
Remember, the convolution of a(v) and b(v) is

o0
a(v) xb(v) = / a(V)b(v — V')dv' (13.23)
— 00
First consider the product z(t)w(t). The effect of the window function w(t) on the Fourier
transform a(v) of x(t) is to convolve each component in it with a sinc-function. For example,
a ¢ function is turned into a sinc-function. The widening dv is inversely proportional to the
length of the time series: dv = 1/T.

Next consider the product [z(¢)w(t)]s(t). The multiplication of the signal by a Dirac comb
corresponds to a convolution of its transform with a Dirac comb, i.e. by an infinite repeat of
the convolution.

Mathematically, the conversion from the continuous a(v) to the discontinuous ag4(v) is as
follows:

aq(v) a(v) * W(v) = S(v) = [, x(t)w(t)s(t)dt
[0 w ) SR o (6= BF) ezt = N (BE) 2R TIN - (13.04)
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Thus, the finite length of the time series (windowing) causes a broadening of the Fourier
transform with a width dv = 1/T" with sidelobes, and the discreteness of the sampling causes
the aliasing, a reflection of periods beyond the Nyquist frequency into the range 0, vy .

In the above we have assumed that each sample is obtained instantaneously. In practice,
the smaple is often an integration over a finite exposure time. This can be described math-
ematically by convolving the time series z(t) with a window function with the width of the
exposure time:

N, k<t < K
b(t) = { 0, oti]grwise “w (13.25)
Since ‘The Fourier transform of a convolution is the product of the Fourier transforms’, this
implies that the Fourier transform a4(v) is multiplied with the Fourier transform of b(t):

sinmvT /N
B(y) = 22T /Y
) wvT /N

At frequency zero, B(0) = 1, at the Nyquist frequency B(vy,, = T/(2N)) = 2/m, and
at double the Nyquist frequency B(v = N/T) = 0. Therefore, the frequencies beyond the
Nyquist frequency that are aliased into the window (0,vy/2) have a reduced amplitude. We
can understand this: the integration of the exposure time corresponds to an averaging over a
time interval T'/N, and this reduces the variations at frequencies near N/T'.

(13.26)

13.4.3 The statistics of power spectra

Now that we have the power spectrum, we want to know how to extract a signal from it. We
assume in out discussion that the time series z(t) consists of noise and a signal, and that noise
and signal are not correlated. We can then write:

Pj = Pj,noise + P',signal (13-27)

For many types of noise, the power Pj oise approximately follows the chi-squared distribution
with 2 degrees of freedom. The normalization of the powers given by Eq.13.16 ensures the
power of Poissonian noise is exactly distributed as the chi-squares with two degrees of freedom.
Thus, the probability of finding a power Pj ,oise larger than an observed value P; is given by

Q(P;j) = gammq(0.5 * 2,0.5P;) (13.28)

(see the discussion following Eq. 12.34).

The standard deviation of the noise powers is equal to their mean value: op = FJ =2.In
other words, fairly high values of P; are possible du to chance.

In order to reduce the noise of the power spectrum, one may choose to average it. The
are two ways to do this. The first is to bin the power spectrum, i.e. take the average of every
W consecutive powers. The second is to divide the time series into M subseries, determine
the power spectrum for each subseries, and then average the power spectra. In both cases,
the price that one pays is a loss of frequency resolution. The gain is that the power spectrum
is now much less noisy. The chi-squared distribution of a power spectrum of a time series
which has been divided into M interval, and in which W successive powers in each spectrum
are averaged, is given by the chi-squared distribution with 2M W degrees of freedom, scaled
by 1/(MW). The average of the distribution is 2, its variance 4/(MW') and its standard
deviation 2/v/ MW . In other words, the probability that a binned, averaged power is higher
than the observed power Py, is given by

Q(P;, = gammq(0.5[2MW1,0.5[MW P;]) (13.29)
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For sufficiently large MW this approaches the Gauss function.

13.4.4 Detecting and quantifying a signal

From Eq.13.28 and 13.29 we can decide whether at a given frequency the observed signal
exceeds the noise level significantly, for any significance level we want to set. Thus, if we wish
90% significance, we first compute the P; for which () = 0.1, i.e. the probability which is
exceeded by chance in only 10% of the cases. Then we check whether the observed power is
bigger than this P;.

The above reasoning is true is we decide on the frequency before we do the statistics, i.e.
if we first select one single frequency v;. Such is the case if we wish to know whether a source
is significantly variable on a known period, for example the orbital period of a binary, or the
pulse period for a pulsar.

In general, we are searching for a period, i.e. we do not know which frequency is impor-
tant, and thus we apply Eq.13.28 and 13.29 many times, viz. once for each frequency. This
corresponds to many trials, and thus our probability level has te be set accordingly. To see
how, first consider one frequency. Suppose that the a value Pgetect has a probability 1 — €
not to be due to chance. Now try Nias frequencies. The probability that the value Pgetect
is not due to chance at any of these frequencies is given by (1 — ¢')Nuials | which for small €'
equals 1 — Niyas€. Thus, the probability that the value Pjetect 45 due to chance at any of
these frequencies is given by € = Niais€’. In conclusion, if we wish to set an overall chance of
€, we must take the chance per trial as € = €/Nyyas, 1.€.

;o €
N trials

= gammq(0.5[2M W], 0.5[ MW Pyetect ]) (13.30)

€

Suppose we have an observed power P;, which is higher than the detection power Pyegect
for given chance €¢’. Because the observed power is the sum of the noise power and the signal
power (Eq.13.27), this implies

P; signal > Pj 1, — Pj noise (1 —¢) confidence (13.31)
Suppose on the other hand that we find no observed power at any frequency to exceed the
detection level. We may then be interested in setting an upper limit to the signal power. To

do this, we proceed as follows. First we determine the level Payceeq Which is exceeded by the
noise alone with a high probability (1 — d), from

1 — ¢ = gammq(0.5[2M W], 0.5[MW Pexceed]) (13.32)

If the highest actually observed power in the range of interest is Ppax, then the upper limit
Pyr, to the power is
Pyr, = Ppax — Pexceed (1333)

in the sense that, if there were a signal power higher than Py, the highest observed power
would be higher than P,y with a (1 — ¢) probability.

13.5 Exercises

Problem 4. Derive Eq.13.12 to 13.15 we use the following intermediate steps.
a. Show that

N_1 ) . »
Z Sk AN 1 B ei/\(Nfl) AN/[2 _ —IAN/2 (13 34)
P ] oiN2 _ gir/2 :
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A

b. Now use Euler’s equation e'* = sin A 4+ 7 cos A and its inverse relations

Cos A\ = % (ei/\ + e_i/\) , sin \ = % (ei/\ + e_i/\) (13.35)
to show
=t B B sin(AN/2) e O — sin B sin(AN/2)
kz::() cos(Ak) = cos[A (N 1)/2]7sin()\/2) , kz::[] sin(Ak) = sin[A(N 1)/2]7sin(>\/2)
(13.36)

c. From Euler’s equations we also have
sin(\ + p) = sin A cos 4 + cos Asin cos(A + 1) = cos Acos p — sin Asin (13.37)

and the inverse relations

cosAcosp = % [cos(A\ + p) + cos(A — p)] (13.38)
cosAsiny = % [sin(A + p) — sin(A — p)] (13.39)
sinAsinpy = % [cos(A — p) — cos(A + p)] (13.40)
Problem 5. Consider a symmetric window function w(¢) which has values w(t) = 1 for

-T/2 <t < T/2 and w(t) = 0 otherwise, and show that its Fouriertransform is a sinc
function.

Computer problem 6. Via computer you obtain a list of 65536 points (16 per line) with
simulated X-ray data from a low-mass X-ray binary. Each number gives the number of photons
detected during one millisecond. There are no gaps in the data.

a. write a little computer program which reads the first 8 numbers from this list, and calculates
the Fourier transform.

b. now use the routine realft(data,n,isign) from Numerical Recipes to compute the Fourier
transform of the same 8 points, and show that you obtain the same result. As input, the
routine realft requires an array data with the data points, the integer n which gives the
number of data points, and the integer isign which tells it whether to perform a forward or a
backward Fourier transformation. As output it gives data(1l) as the total number of photons,
which equals ag, data(2) is a, /2, and for the remaining components of the transform we have
data(2j + 1) = Re{a;} and data(2j 4+ 2) = Im{a;}. Show that you obtain the same result as
with your own code of a.

¢. Now compute the Fourier transform of the whole data set, and compute and plot the power
spectrum.

d. We want to see whether the highest peak observed in the power spectrum is significant.
To do this, determine the detection level of 90% and 99% probability. Take account of the
number of trials!

e. Reduce the noise in the power spectrum by averaging in bins of 16 powers. Do you note
new features?
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