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Chapter 1

Intrinsic fluctuations

Irrespective of the type of information carrier, e.g. electromagnetic or
particle radiation, the incoming radiation beam in astronomical measure-
ments is subject to fluctuations which derive from the incoherent nature
of the emission process in the information (=radiation) source. For a
particle beam this is immediately obvious from the corpuscular charac-
ter of the radiation, however for electromagnetic radiation the magnitude
of the fluctuations depends on whether the wave character or the quan-
tum character (i.e. photons) dominates. By employing Bose-Einstein
statistics, the magnitude of these intrinsic fluctuations can be computed
for the specific case of a blackbody radiation source which is incoherent
or “chaotic” with respect to time. Photons are bosons, which are not
subject to the Pauli exclusion principle, consequently many bosons may
occupy the same quantum state.

1.1 Equilibrium distribution functions

The physical world is quantum-mechanical. One way of describing this,
is to note that particles in a unit volume of space (’a cubic centimeter’)
are distributed in momentum-space in boxes with a size proportional to
h?, where h is Planck’s constant. At each energy, there is a finite number
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6 Chapter 1. Intrinsic fluctuations

7 of boxes (where Z o< 4rp?dp with p the particle momentum).

1.1.1 Bose-Einstein statistics

Consider n; particles, each with energy ¢;, and call the number of boxes
available at that energy Z;. Bosons can share a box. The number of
ways W (n;) in which the n; bosons can be distributed over the Z; boxes
is given by:

(ni + Z; — 1)

W) = 2Nz,

(1.1)
(To understand this: the problem is equivalent to laying n; particles and
Z; — 1 boundaries in a row. The number of permutations is (n; + Z; —
1)!, then note that the particles and boundaries can be interchanged.)
Similarly, put n; bosons in Z; boxes, etc. The number of ways in which
N = 3772 n; bosons can be distributed over the boxes in momentum
space thus is: W = I, W (n;).

The basic assumption of statistical physics is that the probability of a
distribution is proportional to the number of ways in which this distribu-
tion can be obtained, i.e. to W. The physics behind this assumption is
that collisions between the particles will continuously re-distribute the
particles over the boxes. The most likely particle distribution is thus the
one which can be reached in most different ways. This maximum in W
can be found by determining the maximum of In W, i.e. by setting its
derivative to zero:

Aln W (n;)

on;

InW = Zan ni) = AlnW = Z

i=1 i=1

Ani=0  (1.2)

Consider now one term from the sum on the right-hand side. With
Stirlings approximation Inx! ~ 2 Ilnz — z for large x one gets:

an(nZ) = (nz + Z; — 1) ln(nz + Z; — 1) - (nz + 7Z; — 1) —nilnn; +n; —
—(Zl — ].) IH(ZZ — ].) + (Zl — ].) =

mi+2Z;—DIn(n; + Z; — 1) —n;lnn; — (Z; — 1) In(Z; — 1)

(1.3)



1.1. Equilibrium distribution functions 7

For a nearby number n; + An;, one has:
Oln W (n;)

Bni
= An;[In(n; + Z; — 1) — Inn;] (1.4)

AlnW(n;) = InW(n;+ An;) —InW(n;) ~ An;

to first order in An;.
The most likely particle distribution, representing the equilibrium situa-
tion, can now be obtained from setting:

AlnW =" An;[In(n; + Zi —1) = Infi;] = 0 (1.5)

i=1

in which 7; represents the equilibrium (expectation, c.q. average) value
of n;. This notation is also used for other equilibrium parameters, e.g.
the occupation number (see further on).

Since one considers a system in thermodynamic equilibrium, i.e. for
which the number of particles N = > n; per unit volume and the energy
U = > n;e; per unit volume are constant, the variations in n; must be
such as to conserve N and U:

AN =) An;=0 (1.6)
i=1
and: -
AU = €An; =0 (1.7)
i=1

These restrictions imply that the following expression should also hold:

AlnW-aAN-BAU = Y An;[In(f; + Z; — 1) —Infi; —a — fe] = 0
i=1
(1.8)
The sum in equation (1.8) is zero for arbitrary variations An;, provided
that for each i:
In(fi; + Z; — 1) — In7 L L 1.9
n(n; +2Z; — 1) —Inn; —a— P =0 = Zi—1  eotha —1 (1.9)




8 Chapter 1. Intrinsic fluctuations

Since Z; > 1, fi;/(Z; — 1) can be replaced by 7;/Z;, which represents
the average occupation at energy level €; (occupation number). The
values of the coefficients @ and 8 can in principle be obtained from
the total number of particles and the total energy by substituting n; in
N =% n;and in U = 3 32 n;e;. However, their values can be more
easily obtained by employing the following thermodynamical relations:

A
S=klnW =AW = TS (1.10)
Substitution in expression (1.8) now yields:
AS = kaAN + kAU (1.11)

Furthermore, the fluctuation AU can be expressed as a function of the
fluctuations AS, AV and AN according to the general thermodynamical
relation:

AU = TAS —pAV + (AN, for this case reducing to:
AU = TAS+ (AN (1.12)

since the volume considered remains constant (AV = 0). The param-
eter ( = —a/f represents the thermodynamical potential per particle
(the so-called chemical potential). The chemical potential can directly
be obtained from the thermodynamic potential G = U — T'S + pV/, also
referred to as the free enthalpy or Gibbs free energy of the system con-
cerned, through ¢ = G/N.

Comparison with (1.11) results in @« = —(/(kT) and 8 = 1/(kT).
Substituting these values for o and 3 in equation (1.9) and, since Z; > 1,
replacing 71;/(Z; — 1) by the average occupation number 7, = 7;/Z; (i.e.
the average occupation at energy level ¢, = ¢;) yields:

1
gy = —(—= (1.13)
et —1

which is the Bose Finstein equilibrium distribution.
Note: To discriminate between the actual number of particles n; at
energy level ¢; with available levels Z; and the associated occupation
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number, no new variable has been introduced but rather a change in
suffix from ¢ to k. This implicitly means that in the relevant formulae
€; = € and Z; = Zj, can be freely interchanged depending on whether
the actual number or the occupation number is being treated.

End of Note.

In the case of a Boson gas comprising photons, the number of photons
need not be conserved: e.g. an atom can absorb a photon and jump
from orbit 1 to orbit 3, and then emit 2 photons by returning via orbit
2. Thus, the Lagrange condition given in equation (1.6) does not apply
to photons, hence the photon distribution is obtained by dropping « in
equation (1.9):

ng _ 1
Z 1 =Ny, = T (1.14)
which is the Planck equilibrium distribution.
M, NOw represents the average occupation number of photons at fre-
quency vi. Note that photons do not collide directly with one another,
but reach equilibrium only via interaction with atoms.

1.1.2 Fermi Dirac statistics

The same treatment as in the previous section can be applied to fermions.
However, in this case the particles are not allowed to share a box, and
the number of ways W (n;) in which n; particles can be distributed over
Z; boxes with energies ¢; is given by:

Z;!

W) =z

(1.15)

The difference in In W (n;) between nearby numbers is:
InW(n; + An;) —InW(n;) = —An; [Inn; — In(Z; — n;)] (1.16)

to first order in An;. This leads to the following equilibrium distribution
function:
ng _ 1
- =Nk = —F—¢
Zi e 57 +1

which is the Fermi Dirac equilibrium distribution.

(1.17)
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Chapter 2

Fluctuation around
equilibrium

Assessment of fluctuations in the equilibrium state can be tackled from
two different perspectives:

e A macroscopic fluctuation analysis of the fundamental thermody-
namic quantities like temperature, pressure, volume and entropy

e A microscopic approach involving a statistical treatment of the
particle population distribution functions.

Both approaches are covered in the following paragraphs to maximize
the understanding of the underlying physics.

2.1 Fluctuations of the thermodynamic quan-
tities T, S, p and V

In this section, the mean square fluctuations of the fundamental macro-

scopic thermodynamic quantities will be derived pertaining to any small

part of a closed system (cs), i.e. a system thermally isolated from its en-
vironment. The system can be regarded as a medium in which any small

11



12 Chapter 2. Fluctuation around equilibrium

part represents a body that can freely exchange heat and work with the
medium. Owing to the large size of the medium relative to the body
concerned, the temperature T' and the pressure p of the medium can be
taken as constant.

Let S.s be the total entropy of the closed system (medium + body).
If the body is in equilibrium with the medium, S.s = f(U.s) is at its
mazimum value for a given value of the total energy U, i.e.:

(Scs)maz = feq (ch) (21)

However, if the body is not in equilibrium (notation *) with the surround-
ing medium, the total entropy of the closed system is lower relative to its
maximum value (S¢s)maz Dy a certain amount AS.s for the same value
of the total energy U.s:

Sc*s = (Scs)maz — ASgs (22)

This is schematically shown by segment AB in figure (2.1). The horizon-

tal segment BC gives the change in the total energy when the body goes
reversibly from a state of equilibrium with its surrounding (medium) to
a non-equilibrium state that corresponds to position B in figure (2.1).
Putting it differently, the segment BC represents the minimum work that
needs to be done by some external source to bring the body reversibly
from a state of equilibrium with the medium to a state corresponding to
position B. One has to keep in mind, that during this process the body
may exchange work and heat with the medium. As a result, the total
change AU in the energy of the body associated with a certain change
in its state comprises three parts: the work w done on the body by
the external source, the work done by the medium and the heat gained
from the medium. Since the temperature T,, and the pressure p,, of
the medium may be taken as a constant, the work done by the medium
on the body equals p,, AV, and the heat loss to the body is given by
—TmAS,,. Thus:

AU = w + pm AV — TinAS, (2.3)

Since the total volume of the closed system remains constant, AV, =
—AVyoay = —AV, moreover the law of increase of entropy gives ASyoq, +
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body in equilibrium
with medium
Scs = f;)q( ch )

l 'AScs

—_— %\body not in equilibrium
external work w,,;,; with medium

U,

cs

Figure 2.1: The entropy of a closed thermodynamic system as a func-
tion of its total energy. The solid line represents the situation for full
equilibrium. The vertical dashed line AB represents the drop in entropy
—AS.; when the body is not in equilibrium with the surrounding medium.
The horizontal dashed line BC is the change in total energy when the
body goes reversibly from the state of equilibrium with the medium to the
non-equilibrium state corresponding to dot-B. Credit Landau and Lifshitz
(1975).

ASp, >0, hence ASy, > —ASpoqy = AS. This yields:
w > AU — T, AS + p,, AV (2.4)

The equality occurs for a reversible process. The equilibrium (= mean)
values of the temperature and the pressure of the body, Tbody and
Drody are by definition equal to T}, and the pressure p,, of the medium:
Troady = T = T and Ppogy = pm = p. The suffixes of T and p have
now been dropped since in what follows, it will be implicitly assumed
that the coefficients of the fluctuation quantities always refer to their
equilibrium (mean) values. Hence the minimum work by the external
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source can also be expressed as:
Wmin = AU =TS +pV) = AG (2.5)

Equation (2.5) in fact shows that the work done by the external source
is equal to the change in thermodynamic potential (or free enthalpy) AG
of the body. Since the body considered constitutes only a very small part
of the closed system, the processes involving it cause only a miniscule
relative change in the total energy AU and the total entropy AS, hence
one can immediately see from figure (2.1) that the following relation
should hold:

ds
A cs — — = min 2.
S, <dch> w (2.6)

Moreover, the derivative (OU,.s/0S.s) represents the equilibrium tem-
perature T of the closed system, i.e. the temperature of the medium,

thus:
 (Wamin\ (AU -TAS +pAV
AS = = (T5™) = - ( T ) (2.7)

Expression (2.7) gives the amount by which the entropy of a closed
system differs from its maximum value if the body is not in equilibrium
with the medium. The values AU, AS and AV represent the differences
between the energy, the entropy and the volume of the body and their
values in the state of complete equilibrium.

According to equation (1.10), the probability to encounter a fluctuation
in entropy AS at entropy value S is given by:

InW (S +AS) —InW(S) = AlnW(S) = % (2.8)

Substitution of relation (2.7) yields a fluctuation probability:

AU—TASerAV)
- ®T

W = e = ¢ (%F) (2.9)

The exponential can be evaluated by writing the energy U as a function
of the variables S and V. Taylor expansion of AU with inclusion of the
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second order terms yields:

oUu oU
AU = | — A — A
v <65>V S+<6V>s v

o*U 9 ou? o*U 9
<W) y (AS)* +2 <m> oy ASAV + <8V2> (AV) ]2.10)
Substituting (OU/0S)y = T and (0U/0V)s = —p, AG reduces to:
1| [/0%°U 5 o?U U 5
1 oU oUu

- {ASA<65> +AVA<8V> }
1

= 5 (ASAT — AVAp) (2.11)

1
2

AG =

This leads to a fundamental result, that expresses the fluctuation proba-
bility in terms of the fluctuations of all four macroscopic thermodynamic
quantities AT, AS, Ap and AV:

ATAS — ApAV)

| G (2.12)
From this general expression the fluctuations of each of the four fun-
damental thermodynamic quantities can be derived. Each fluctuation
quantity can be expressed as a function of two independent variables.
Let’s first take 7" and V as independent variables, i.e. S = f(T,V) and

p= f(TaV)

[0S S C, op

AS = (8_T> AT+<8V> AV__AT+<8T> AV
_ (o Op

o= (2) are(2) av 1y

with C), the specific heat under constant volume and with application of
the thermodynamic Maxwell relation (0S/0V)r = (0p/0T)v.
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Substitution of the above expressions in equation (2.12) yields:

W = e [2kT2( ) ZJiT(Ba_‘;;)T(AV)Z] = 67[25;2 (AT)Q]-ei[fﬁ(é)_p) (Av) 2]
(2.14)

This result shows that the temperature and volume fluctuations are in-

dependent from each other (ATAV = 0), and that both distributions
are Gaussian with:

Mean: AT = 0
. kT?
Variance: (AT)? = c (2.15)
Mean: AV = 0
Variance: (AV)2 = —kT <8_V> , (8_V> < 01(2.16)
op ) op )

To assess the magnitude of the fluctuations Ap and AS, take now p
and S as independent variables, i.e. T = f(p,S) and V = f(p,S):

oT oT oT T
AT = [ =) A AS=[=—] A —A
(817)5 p+<85> S (é)p)S p+0p °

oV ov ov oT
av = (7Y ap +( ) AS=<—> A +<_> AS(2.17
(817)5 oS op)g P op)g (2.17)

with C, the specific heat under constant pressure and with application
of the thermodynamic Maxwell relation (0V/9S), = (0T /0p)s.
Substitution of the above expressions in equation (2.12) yields:

W o [ a9 gt (8),00°] _ - [y a97] - [-ste (8) (097]
(2.18)
This result shows that the entropy and pressure fluctuations are inde-

pendent from each other (ASAp = 0), and that both distributions are
Gaussian with:

Mean: AS = 0
Variance: (AS)2 = kC, (2.19)
Mean: Ap = 0

. op op
: (Ap)2 = —kT|—=—=— — 1(2.2
Variance: (Ap) k <6V>S’ <6V>S < 01(2.20)
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2.2 Fluctuations in the equilibrium state

The mean square volume fluctuation given by expression (2.16) can be
used to also derive the fluctuation in the number of particles in a fixed
volume in the body.

Consider some part of the body that contains N particles. The volume
fluctuation per particle follows from dividing both sides by N?2:

@y = -33 (%), (221)

For a fized volume, A(V/N) = —(V/N?)AN, and equation (2.21) can

be written as: )
—_ N ov
AN)?2 = —kT | — — 2.22
w = i () (ap>T (222

This expression can be reworked by implementing the following notions.
The partial derivative (0V/dp), was taken under the implicit condition
that N is constant, hence:

w(5)(5), = () (5),,-
kTN [a% (%)]TN (2.23)

Furthermore, the number of particles N = V f(p,T), so (N/V) = f(p,T)
and consequently it is immaterial whether (N/V) is differentiated at con-
stant IV or constant V', thus the variance for the fluctuation distribution
in the number of particles becomes:

3 (), BE), -

N ON ON 8p>
kT | — — = kT | — — =
<V> <6p>:r’,v (ap>T,V <6< TV

(AN)?
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In the above sequence the equality (N/V) = (Op/0¢)r,v was utilized.
This equality follows directly from the expression for the differential
of the free energy AF by inclusion of a term that takes the fluctua-
tion of the number of particles into account: AF = AU —TS) =
—SAT — pAV + (AN. Considering a fixed temperature (AT = 0)
and a fixed volume (AV = 0) and transforming (AN in the equiva-
lent NA(C through (AN = A((N) — NA( = AG — NA(, one arrives
at A(F —G) = —A(V) = —NA(. With AV = 0 this results in
(@p/0C) 1y = N/V.

Note: Expression (2.24) can also be derived directly from the distri-
bution function of the micro-canonical ensemble describing the equilib-
rium state of a closed system. For completeness this derivation is also
presented here.

Consider a thermodynamically closed system that constitutes a large
ensemble of subsystems. Each of these subsystems in turn comprises a
large number of particles N. The probability p(Uy) = px that such a
subsystem possesses a microscopically defined quantum state with total
energy Uy, is given by the Gibbs distribution:

Pr = Ao~ with 4 = Ze‘(%) (2.25)
k

with pi the probability that the subsystem concerned possesses a total
energy Uy associated with its microscopically defined quantum state.
The value of the coeffient A follows from the normalization requirement
that the integral probability taken over all energy levels U should be
equal to unity. This expression implicitly assumes however that the
number of particles N in the subsystem is constant. If the fluctuation
in the number of particles is to be taken into account, as it should be
in this case, the micro-canonical distribution needs to be extended to
both energy Uy, and particle number N described by the bivariate Gibbs
distribution function p(N,Ux) = pn it

Unge = N
kT

PNE = Ae_( with the normalization:
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Un,k —CN UN .k

S ISR

with ¢ = G/N the chemical potential as before. Note that the quantized
total energy levels Uy, of the subsystems are now also a function of
the actual number of particles N contained in each specific subsystem
involved.

The fluctuation in the number of particles can now be obtained by com-
puting the variance (AN)2 = N2 — N2 by applying the probability
distribution function (2.26):

)(2.26)

SN (i—T)ze ( ) N2 (i—T)Ze ( )
G N ~3 _ N
N = (UNk> and N2 = (UNk>
Telir) ye Te (k—N)Ze
N k N
(2.27)
Introducing the variable J = 3" e(¢N)/(KT) S~ o= (Un,#)/(ET) one can write
N k
for (2.27):
. 1 aJ\’ —  (kT)20%J
2 _ = il 2 — - -
N® = e <kT8<> and N T aa

and after substitution:
—_— 0 (10J ON
2 2
(AN) = (kT) _3C <_J _8C> = kT <_8C> (2.28)

which concurs with the result that was obtained previously in (2.24).
End of Note

If N is distributed according to a Bose-Einstein equilibrium distribu-
tion, substituting N = iy, yields the variance in the occupation number
due to the intrinsic fluctuations:

(@m)? = KT <8672k>
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0 1
kT
<8<>TV <e T ¢ —1>
- () () v

ng (1 + ng) (2.29)

(Ank)2

Equivalently, when considering a photon gas with the Planck equilibrium
distribution the intrinsic fluctuations amount to a variance:

(Any,)? = fiy, (1 +7y,) (2.30)

Similarly, applying expression (2.24) to a Fermi-Dirac equilibrium dis-
tribution yields a variance for the fermion distribution of:

(Ank)2 = ﬁk(l - T_Lk) (231)

A different, and more direct, approach to assess the fluctuation in equi-
librium distributions is to extend the statistical treatment used for es-
tablishing the particle population distribution functions that resulted in
the Bose and Fermi distributions.

The approach involves a look into the number of ways in which n; + An;
particles can be distributed, as compared to that for n; particles:

Oln W (n;) . (An;)? 82 In W (n;)

on; 2 on?
(2.32)

InW(n; + An;) = InW(n;) + An;

where now the 2nd order term has been included.
In equilibrium the term in equation (2.32), proportional to An;, is zero.
Consequently, equation (2.32) can be written as:

0% In W (n;)
on?

(2.33)

W(n; + An;) = W(n;) -e_W T (an)? with W' (n;) = —
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In other words, the probability of a deviation An; drops exponentially
with the square of An;, i.e. the probability of An; is given by a Gaussian!
The average value for (An;)? is found by integrating over all values of
An;:

o) ”(”li) 2
AT [ (Any) W (ny) e TR (An)® gAp, 1 -
( nl) - ) _W”("i) o - W”( ) ( -3 )
S W) -em = (An)*dAn, ni

Note: W(n;) and W"(n;) do not depend on An;, so that they can
be considered as constants in the integrations. The maximum negative
deviation has An; = —n;, and the maximum positive deviation An; =
N —n;, consequently the integrals should formally be evaluated between
these values; however, for large An; the integrand drops rapidly to zero,
and so the integrals can be extended to the full range —oo to 400,
without compromising the result.
End of Note.

Computing the second derivative of In W (n;) and changing sign yields
the variance:

n; + Z; — ].) _ |:
ALl A —y

(An;)? = [Wn(ni)]—l _ 7i; 71 1+ _%} (2.35)

As argued before, in case of a photon gas ¢ needs to be dropped. Hence,
for photons:

(An;)?2 =a;(1 +7y,,) = 7 {1 + %J (2.36)

Hence, the fluctuation in the average occupation number (An,, )* for
a photon gas follows from:

= Ty, (1 4+ 7iy,,) (2.37)

For the case of a Fermi-Dirac equilibrium distribution, the average value
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of the square of the deviation can be derived in a way similar to the one
deployed for the Bose Einstein distribution:

1
e (2.38)

Bny? = M\ 2 ) _ oy =y {1 - ﬁ]

The fluctuation in the average occupation number (Ang)? now follows
from:

(ATL@)Q

(Ank)Q = ZZ

= ng(1 — fig) (2.39)

2.3 Fluctuations in a blackbody radiation
field

The average volume density of photons in a blackbody Bose gas with fre-
quencies between vy, and vy +dvy, follows from N (vg)dvy = g(vi ), dvg,
in which g(vy) represents the volume density of quantum states per unit
frequency at vi. Since the stochastic variables n,, are independent, the

Bose-fluctuations (AN)?(v) in photon density per unit frequency can
be written as (omitting the suffix k):

where N (v) follows from the specific energy density p(v) = p(v)cquilibrium
given by:

8mh V3
S \dy = o v
p(v)dv 3 exp(,':—é,’,)—l

dv (2.41)

through the relation N(v) = p(v)/hv.

If a detection element, e.g. an antenna, is placed within a blackbody
radiation field, for example inside a vacuum enclosure at temperature 7',
the incident photon flux is given by n(v) = £ =N (v)A.Q. The factor
% refers to one component of polarisation, A, is the effective area of the
detection element and Q constitutes the solid angle subtended by the

detector beam viewing the radiation field. If radiation illuminates an
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extended surface (A.) with various directions of the wave vector, i.e. an
omnidirectional blackbody radiation field, coherence theory states that
spatial coherence is limited to A.Q ~ A2, the so-called extent (etendue)
of coherence.! Substituting N (v), the expression for the specific photon
flux n(v) (in photons s~! Hz™!) becomes:

1

M) = T (2.42)

(An)*(v) Ty <1 + W) (2.43)

In the extreme case that hv > kT, the second term becomes much
smaller than 1, hence:
(An)?(v) = a(v) (2.44)
This is the well-known expression for Poissonian noise in a sample con-
taining fi(v) photons. This condition is called the quantum limit of
the fluctuations and it represents the minimum value of intrinsic noise
present in any radiation beam. Obviously, this always holds for corpus-
cular radiation (cosmic-rays) and neutrinos, since the wave character is
not an issue.
For a photon energy hv <« kT, the noise is normally expressed in

terms of the average radiation power P(v) (e.g. in Watt Hz ') by writing
P(v) = (hv)n(v) and (AP) 2(v) = (hv)2(An)2(v):

(AP)2(v) = P(v) (hu + W) = P(v)(hv + P(v)) (2.45)

Taking the limit hv < kT

(AP)2(v) = P?{) (2.46)
and: P(v) = kT (2.47)

which is the expression for the classical thermal noise power per unit
frequency bandwidth. This limit is called the thermal limit.

I'This relation is the same as that governing the size § = \/D of a diffraction
limited beam (Q & 02) for an aperture with diameter D: A. ~ D2.
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Figure 2.2: Frequency as a function of temperature: division between
thermal and quantum noise. Credit Lena (1988).

The transition between noise in the quantum limit to the thermal
limit occurs at hv ~ kT. At room temperature, T ~ 300 K, this cor-
responds to a frequency v ~ 6 THz, or a wavelength A ~ 50 pym. The
relation v = kT /h as a function of temperature T is displayed in fig-
ure 2.2. It is clear from this diagram that radio observations are al-
ways dominated by the wave character of the incoming beam and are
therefore carried out in the thermal limit. As a result, the treatment
of noise in radio observations differs drastically from that of measure-
ments at shorter wavelengths. Specifically at submillimetric and infrared
wavelengths quantum limited observation is vigorously pursued but this
remains still difficult.

The fluctuations in average power P(v), given in equation 2.46, for
the thermal limit can be interpreted in such a way that whenever wave
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packet interference becomes important, the interference will cause the
fluctuations to become of the same magnitude as the signal. The low
frequency fluctuations can be thought of as caused by the random phase
differences and beats of the wavefields, as described in the following para-
graph.

Note of Caution: The above expression for the fluctuations in a black-
body photon gas applies only to the interior of a blackbody in which the
receiving element is submerged, i.e. a blackbody cavity or a thermal bath,
where the condition \2 = ¢®/v® = A is satisfied. If this condition is
not fulfilled, then even in the limit hv < kT quantum noise may dom-
inate. For example, if a star, whose spectrum resembles a blackbody at
temperature T, is observed at frequency v, such that hv < kT, thermal
noise ought to dominate. The star may however be so distant that the
radiation is effectively unidirectional and hence, A.Q0 < X2. The pho-
tons will consequently arrive well separated in time and quantum noise
evidently dominates.
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Chapter 3

Stochastic description in
the wave limit

3.1 Wave packets, random superposition

In astrophysics, many sources of electromagnetic (EM) radiation have a
thermal origin. A beam of thermal radiation will ordinarily comprise a
myriad of randomly overlapping wave groups or wave packets. Examples
of such wave packets are shown in figure (3.1). They arise from two
different types of quasi-monochromatic sources:

- Gaussian shaped spectral lines which emerge when several line broad-
ening mechanisms contribute to the line formation (viz. the central limit
theorem).

- Spectral lines with a Lorentz profile, characteristic for the natural line
broadening associated with the intrinsic time spread of the radiative
atomic transitions involved that are governed by the uncertainty rela-
tion of Heisenberg o.0r = h/2.

The characteristic length, 7., of these wave packets in the time domain
follows from the Fourier transform of the spectral frequency distribution.
A Gaussian spectral line, centered at frequency vy with a full-width half-
maximum (FWHM) Av, corresponds to a Gaussian shaped wave packet

27
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}

E(1)

At,

Vo v

Figure 3.1: Ezamples of wave packets and their Fourier (<) transforms.
Left: Gaussian shaped wave packet < Gaussian spectral line. Right:
Ezponentially damped harmonic oscillator < Lorentzian spectral line.
Credit Hecht (1987).

with a characteristic width 7. ~ (1.5Av)~!. A Lorentzian profile (vp,
FWHM Av) derives from an exponentially damped harmonic oscillator
with a 1/e-value 7. = (rAv)~!. The characteristic time 7. is commonly
referred to as the coherence time, it represents the typical time scale over
which the phase of the EM-wave can be predicted with reasonable accu-
racy at a given location in space. For atomic transitions in the optical
7. ~ 107%. Figure (3.2) shows a linearly polarised quasi-monochromatic
signal comprising a random superposition of individual wavepackets.

This wave signal fluctuates both in amplitude and in frequency, the latter
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characterised by a typical bandwidth Av around an average frequency v.
The frequency stability of such a quasi-monochromatic wave is defined
by 7/Awv.

The linearly polarised signal displayed in figure (3.2) can mathemati-
cally be expressed by the real function:

E(t) = Eo(t) cos(2nvt + ¢(t)) (3.1)

The amplitude Ey(t) of the quasi-monochromatic wave is a wide-sense
stationary Gaussian random time function of zero mean. Moreover the
stochastic process is assumed to be mean- and correlation-ergodic, i.e.
for an arbitrary real stochastic variable X (t) its expectation value at time
t, E{X(t)}, can be interchanged with its time average:

X = lim = [ X(t)dt=E{X(1)} (3.2)

+3T
1

1
—ir

Furthermore, the expectation value at time t of the autocorrelation
Rx (1) of X(t) can be interchanged with its time average:

+3T
Rx(r) = X@)-X(t+71) = 151100% /X(t)-X(t+T)dt=
—%T
= E{X(t)-X(t+7)} (3.3)

The frequency is randomly varying around an average frequency 7,
the instantaneous frequency v(t) follows from the time derivative of the
argument of the cosine term according to:

1 do(t)

v(t) = —L ot + o8) = 7 + —

2m dt (3.4)

As can be seen from equation (3.4), the time variable phase factor ¢(t)
fully accomodates the frequency bandwidth Av of the stochastic wave
signal.
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Figure 3.2: A linearly polarised quasi-monochromatic wave.

The above mathematical description suffices for a linearly polarised
signal, however in case of a thermal radiator a particular polarisation
direction is only very short-lived, i.e. only during the coherence time 7.
of an emitted wave packet. This can be understood by considering the
emission process involved.

Thermal emission consists of an extremely large number of radiative
transitions, generated by randomly oriented atomic emitters. Each atom
radiates a polarised wave train for roughly 10~® or 10~ seconds in the
case of optical light depending on the natural line width Av of the transi-
tion. In the case of molecular vibrational or rotational transitions (radio
and far infrared) the timescales are substantially longer. Considering
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a certain wave propagation direction E, individual atomic (molecular)
emissions along that direction will combine to generate a polarised wave,
which however will not persist for more than the typical coherence time
7. of a wave packet, i.e. in the optical 1078 — 10~? seconds. New wave
trains are continually emitted and as a result the magnitude and the
polarisation direction of the electric vector E(t) changes in a completely
random manner on a typical time scale equal to the coherence time 7.
If these changes occur at a rate of 108 to 10 per second, any persistent
polarisation state is undiscernable. Thermal radiation is therefore des-
ignated as natural or unpolarised light, although the latter qualification
is somewhat confusing since in actuality the light comprises a rapid suc-
cession of different polarisation states.

3.2 The analytic signal

The rapid random fluctuations in the electric vector E(t) of a thermal
radiation field can be handled mathematically in a scalar approach by
using a complez analytic representation of the quasi-monochromatic wave
field.

Consider the time-varying electric field E(t) of equation (3.1). Along
with E(t) one may consider a complex function:

E(t) = E(t) +iFpi(t) (3.5)
in which: 1 1% B(Ndp
Fgi(t) = =/ % (3.6)

is the Hilbert transform of E(t). This integral can be interpreted as a
convolution of E(t) with (mt)~!:
1
Fyi(t) = E(t) x — 3.7
wilt) = ) « = (37
Applying the convolution theorem and considering the Fourier transform
of (mt)™! & i sgn(v), the Hilbert transform can be regarded as a special
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filter that leaves the amplitude of the spectral components unimpaired,
but alters their phases by m/2, positively or negatively depending on
the sign of v. A consequence of this is, that Hilbert transforms of even
functions are odd and those of odd functions even.

The complex function F(t) of equation (3.5) is known as the analytic
signal, the Hilbert transform is referred to as the quadrature function of
E(t). For example, the quadrature function of cost is sin#, the analytic
signal is therefore exp(it).

Analytic functions are useful to describe quasi-monochromatic wave phe-
nomena, where one deals with modulated carrier signals. The analytic
signal contains no negative frequency components, it is obtainable from
E(t) by suppressing the negative frequencies and doubling the result.
For example cos 2wyt contains frequency components at vy and —vyg:

62muot + 6—2muot

cos 2wyt = 5 , (3.8)

the analytic signal follows from suppression of e~27o* and multiplica-
tion by 2.

Problem 1: Show with the aid of a Fourier transform that applying
the above operation to E(t) results in the analytic signal E(t)!

If E(t) is a Gaussian process, its Hilbert transform (linear) is also a
Gaussian process, moreover the autocorrelation functions are equal and
the values of E(t) and its Hilbert transform are uncorrelated at the same
instant ¢. The analytic signal comprises a harmonic oscillation at an
average frequency 7 modulated by a slowly varying envelope:

E(t) = Ey(t) - /*™) (3.9)
The complex amplitude (envelope function) Ey(t) can be expressed as:
Eo(t) = |Eo(t)] - e™® (3.10)

This envelope function is also referred to as the phasor of the analytic
signal, |Ey(t)| represents the instantaneous amplitude of E(t) and &(t)

the time variable phase. The time rate of change of ¢(¢), i.e. (%) %ﬁt),
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represents the instantaneous frequency shift Av(t) of the analytic signal
relative to the average carrier frequency 7.

In the next section, a quantitative fluctuation analysis of a thermal wave
field will now be deployed with the aid of the expression for the analytic
signal:

B(t) = | Bo(t)] - ePm7t+000) (3.11)

3.3 Fluctuation analysis of a thermal wave
field

The ideal monochromatic plane wave

Let’s first consider the phasor expression for a, hypothetical, perfectly
monochromatic plane wave and its physical interpretation.
The frequency bandwidth Av then reduces to a delta function: §(v — 7).
In the time domain this is represented as an infinitely long wave train
(i.e. the Fourier transform of a d-function). If this wave train were to
be resolved in two orthogonal polarisation components perpendicular to
the direction of propagation, they in turn must have the same frequency,
be infinite in extent and are therefore mutually coherent. In other words
an idealised monochromatic plane wave is always polarised. Expressing
this in terms of the phasor Ey(t) of a linearly polarised plane wave, this
results in:

Eo(t) = |Eo(t)] - ) = |Ep| - ' (3.12)

i.e. both the amplitude |E0| and phase ¢g of the phasor are constant in
time.

Polarized thermal light

Consider a radiation field emitted by a thermal source, that is subse-
quently passed by a polarization analyzer with its polarization direction
along the X-axis in a plane perpendicular to the wave propagation vector
k. The time wave form in the X - t plane can now be regarded as the
sum of a great many independent, contributions of the x-components of
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the fields generated by the individual atoms (molecules). The random
fluctuations of E(t) along the x-axis, Ex (t), can now be described by a
fluctuation analysis of the phasor Exq(t), i.e. of its magnitude | Exq(t)]
and its phase ¢(t). For time scales short compared to the coherence time
(1), Exo(t) will remain almost constant in time, in the case of optical
light for 7, ~ 10~® s this still comprises several million harmonic oscil-
lations of the electric vector E(t) (7 ~ few 101 Hz). For time scales
7> 7., | Exo(t)| and ¢(t) will vary randomly, this is pictorially shown
in figure 3.3. The coloured phasors signify the built up of Exq(t) by
a great many independent atomic contributions that are fully uncorre-
lated. Mathematically these fluctuations can be described by regarding
the real and imaginary parts of Exo(t), Re(Exo(t)) and Im(Exo(t)), as
uncorrelated Gaussian stochastic variables with equal standard deviation
that vary rapidly and randomly and are mutually incoherent.

The joint (bivariate) probability density distribution is then given
by:

poiv (ReBxo(t), InBxo(t)) dReBxo(t) dimBxo(t) =

1 Re2 B xq(t)+Tm2E xq(t) - ~
= ——— e 2T " dReBxo(t) dImExo(t)  (3.13)

2mo?

Furthermore, the following relations hold:

|Exo(t)]> = |Ex(t)|*= R Exo(t) + Im?Exo(t) (3.14)
o) = arg(EXO(t)) = arg(Ex (t)) — 2mot =
= arctan M (3.15)
ReExo(t)

Changing to polar coordinates the bivariate probability density distri-
bution for | Exo(t)| and ¢(t) can be obtained:

P (| Exo(t) ], 6(1)) d | Exo(t) | do(t) =

= [ Exo®] B0 1 Beo) | dotr) (3.16)

2mo?
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Figure 3.3: Black: Random orientation of the complex envelopes (pha-
sors) of polarized thermal light at a fized point in space at three different
times to, t; and ty separated by time intervals larger than the coherence
time 1.. Colors: signifying the great many independent complex atomic
(molecular) phasors.

Integration over | Exq(t)| yields:

p(¢(t) = 5= (3.17)

i.e. all phase angles ¢(t) are equally probable, which is obviously to be
expected for randomly fluctuating phase angles.

Integration over all phase angles ¢(t) yields the amplitude distribu-
tion | Exo(t) | for the X-component of the electric field vector of the
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Figure 3.4: The distribution functions p (|Exo(t) |) and p (¢(t)).

thermal source:

N Exolt  Bxot)?
Pr (|EX0(t)|) = [Exol)] );02( ) e e (3.18)

This is a so-called Rayleigh distribution. pr (| Exo(t) |) and p (¢(t)) are
displayed in figure 3.4.

Problem: 2 Show that the most probable value of |Exo(t)| equals o
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and the average value for the amplitude equals o/(7/2). q

The intensity (irradiance) of a traveling plane EM-
wave

The energy streaming through space in the form of an electromagnetic
wave is shared between the constituent electric and magnetic fields.
The energy density of an electrostatic field (e.g. between plates of a ca-
pacitor) pz = €60/ E|?/2 (dimension Joule/m?), with | E| the magnitude
of the electric vector (dimension V/m) and ¢y the vacuum permittiv-
ity (8.8543-107'2 Asec/Vm). Similarly, the energy density of a mag-
netic field (e.g. within a toroid) equals pz = |B|?/(2rpt0) (dimension
Joule/m?), with |B| the magnitude of the magnetic vector (dimension
Tesla = Vsec/m?) and pg the vacuum permeability (47107 Vsec/Am).
The wave equation for a plane electromagnetic wave traveling along
the x-direction in vacuum is given by:

PE(x,t) _ 1 9°E(x,t) d &°B(z,t) _ 19°B(x,t)
ox? 2 ot an ox? T2 o

for the electric field wave and the magnetic field wave respectively. The
magnetic field wave travels in a plane perpendicular to the electric field,
both the electric field and the magnetic field directions are perpendicular
to the direction of propagation (x). The plane wave solution can be
expressed by a harmonic function, using a complex scalar representation:

(3.19)

E(x,t) = Ey- 2" W=2/) and B(z,t) = By -e?™W=2/N)  (3.20)

Consistency with Maxwell’s equations requires that for the EM-wave
holds pz = pj. Hence, from the above, we have By = Ey/c.

The flow of electromagnetic energy through space associated with the
traveling EM-wave is represented by the Poynting vector § = (1/u0)Ex B,
a vector product that symbolizes the direction and magnitude of the en-
ergy transport per unit time across a unit area (e.g. in units Watt m=2).
The vector magnitude |S| = |E||B|(sin ¢)/uo equals |E||B|/po, since
the magnetic field is perpendicular to the electric field (¢ = 7/2). Rep-
resenting the actual wave signal by taking the real part of expressions
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(3.20) we get:

S| = EyBycos? 2w (vt —z/\) = €ocEs cos? 2m(vt — z/\) =
(e0/pt0)® E2 cos® 2 (vt — z/A}3.21)

The average power flux density for an ideal monochromatic plane wave,
I(t) equals |S(t)]:

I(t) = (eo/po)® Ejcos” 2n(vt —x/X) = (eo/po)?

L2
2

E2
2.6544 - 10*370 (3.22)

expressed in Watt/m? for Eg in Volts/meter.

A perfectly monochromatic plane wave is represented in the time do-
main by an infinitely long wave train and is by definition fully po-
larised. A quasi-monochromatic radiation field from a thermal source
can be described by a complex expression for the electric field E(t),
comprising a harmonic oscillation at an average frequency 7 modulated
by a slowly varying envelope, accomodated by the phasor Eg(t), i.e.
E(t) = Ey(t) - €/®™)_ The average power flux density for this wave
then follows from the expectation value of the product E(t) - E*(t):

1) = B{I(N)} = (eo/mo) E{EW®)-E*(1)} =
2.6544-10° E { |E0(t)|2} (3.23)

Since we are primarily concerned with relative power flux densities gener-
ated by these traveling waves within the same medium, we can disregard
in what follows multiplication with the numerical constant in expression
(3.23), since this (deterministic) quantity is only of relevance for assess-
ing the absolute numerical value of the power flux density and bears no
influence on the description of the stochastic nature of the signals. In
practical computations, this constant should of course be applied!
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The probability density distribution of the instanta-
neous intensity of polarized thermal light

From the distribution derived for |Ex(t)| in a previous paragraph, the
probability density of the instantaneous intensity (or irradiance) Ix (t)
for a linearly polarized (along the X-axis) thermal radiation field can be
readily derived.

We can now set the following equalities:

Ix(t) = Ex(t) - EX(t) = |Ex(t)]> = |Exo(t)? (3.24)
Transformation of variables in equation ( 3.18) yields:
p(Ix) dIx = (Ix) " - e Ix/Ix 1 (3.25)

with Iy = E {|EXO(t)|2} = 252,
This is an exponential probability density distribution that has the im-

portant property that its standard deviation o, is equal to its mean Ix
(= 202).

Problem 3: Prove that the variance of this intensity probability distri-
bution is given by:

(AIx)2 =13 (3.26)
<

This result, which is now obtained formally from the bivariate Gaus-
sian distributed stochastic process with zero-mean for the harmonic wave
components, is the same as the fluctuation in the average radiation power
per unit frequency bandwidth (Watt Hz~!) for one component of po-
larization that was derived earlier for a blackbody radiation field, i.e.
(AP)2(v) = P2(v). This should evidently hold.
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The probability density distribution of the instanta-
neous intensity of unpolarized thermal light

Light from a thermal source can be designated as unpolarized if it full-
fils two conditions. First: if passed by a polarization analyzer in a plane
perpendicular to the propagation vector k, the intensity should be in-
dependent of the rotational orientation of the analyzer. Second: two
orthogonal field components Ex (t) and Ey- () should have the property
that Ex (t)E%(t + 7)| = 0 for all rotational orientations of the X-Y co-
ordinate axes and for all delays 7.

As demonstrated in the previous paragraphs, Ex(t) and Ey (t) can be
handled as complex Gaussian random processes and since they are un-
correlated for all relative time delays 7 they are statistically independent.
The instanteneous intensity of the unpolarized wave field is then defined
by:

1) = [Ex(OF + By (1)
= |Exo()]> + |Evo(t)]
= Ix(t) + Iy(t) (327)

From the definition of unpolarized light Ix (¢t) and Ix(t) have equal
means Ix = Iy = ;1 and are independent statistical processes.
The probability density function of the total instanteneous intensity I(#)
follows from the density function of the sum of p (Ix) and p (Iy):

p(Ix) = 2(I)~' . e 2Ix/T (3.28)
p(Iy) = 2(I)~" e 2I/T (3.29)

The probability density function of this sum is the convolution of p (Ix)
and p (Iy):
p(l) = p(Ix) = p(Iy) (3.30)

Hence:

I _ . B _
p(I) = 4(1)72 / e M Me=2U=IN/1qr = 4(I)=2[e21/T (3.31)
0



3.3. Fluctuation analysis of a thermal wave field 41

This density function is plotted in figure 3.5.

From this distribution it is clear that unpolarized thermal light has con-
siderably less probability of having very small values of the instantaneous
intensity than polarized thermal light. Moreover, the ratio of standard
deviation o to mean value I has reduced from unity in the case of a
polarized thermal wave to \/1/_2 for an unpolarized thermal wave field.
In practice a radiation beam is generally neither completely polarised
nor completely unpolarised, both cases are extremes. More often the
electric vector E(t) varies in a way that is neither totally regular nor
totally irregular, the radiation should be regarded as partially polarised.

10—

Ip(1)

/4

Figure 3.5: Probability density function of the instantaneous intensity of
an unpolarized thermal wave field. Credit Goodman (2000).
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An useful way to describe this behaviour is to envision it as the result of
the superposition of specific amounts of natural and polarised light. If a
quantitative assessment of the degree of polarisation is required, a mea-
surement of all four Stokes parameters is required. In radio astronomy
this is often done due to the intrinsic sensitivity of the receiver front-end
for a particular direction of polarisation.
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Stochastic description in
the quantum limit

4.1 The unfiltered Poisson process

In the quantum limit no coherence effects occur and the radiation field
fluctuations can be described by photon statistics only. Consider an
incident radiation beam (wide-sense stationary, ergodic) with an average
flux of A photons (or particles or neutrinos) per second. The generation
of photons at random times #; can be described by a staircase function,
with discontinuities at time locations ¢; (see figure 4.1):

Z(t) = Z U(t —t;), U(t) = unit-step function (4.1)
1 fort >0
v = {0 for t < 0

The photon flow rate [number of photons per second] follows from time

43
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Z(t) | Poisson process: X, U (t—t,)

| 10 & t

Figure 4.1: Staircase function describing a Poisson process.

differentiation of the stochastic variable Z(t):
dZ(t)
Xt)=——=) 0(t—1t 4.2
0="5" =S o-n (42)

and represents a train of Dirac impulses at random time locations ¢;.
At a constant photon rate, X (¢) is a wide sense stationary (WSS) stochas-
tic signal with a time independent average X (t) = A photons per second,
A is the rate parameter characteristic for the process under consideration.
We can now express the stochastic process Z(t), displayed in figure (4.1),
in the following way:

Z(t)

/X(t’)dt’ = /Z&(t’ — t;)dt' = k(0, 1) (4.3)
0 o ¢

in which k(t1,t2) represents the number of photons in a time period
(t1,t2) of length ¢ = to — t;. This number k(¢1,t2) is a Poisson dis-
tributed random variable (RV) with parameter A, i.e. Z(t) expresses an



4.1. The unfiltered Poisson process 45

unfiltered Poisson process:

(Al;f')k e,

p{k,\t} = with A the rate parameter (see above) (4.4)
Note: For Poisson distributed RVs hold that if two time periods (¢1,t2)
and (t3,t4) are considered that are non-overlapping, then the RVs k(t1, t2)
and k(ts,t4) are independent.

From expression (4.4) we can construct a Poissonian probability density
function featuring a continuous random variable (k):

[ee]

p(k, \t) = Zp(k, M)o(k — k) (4.5)

k=0

The average value of x and of k2 for assessment of the fluctuation mag-
nitude follow from:

+oo
E{x} = / i p(k, \)di = M (4.6)

— 00

E{x’} = / k% p(k, \t)dk = (At)? + At (4.7

— 00

The average value for kK = At in equation (4.6) is of course as expected;
the first term of equation (4.7) is the square of the average and its sec-
ond term represents the variance. Since the variance of the fluctuations
associated with the flow of the photons equals At, the standard deviation
becomes V/At, i.e. the ’strength’ of the noise in the photon flow. The
relative fluctuation or signal to noise ratio (SNR) is then:

At
SNR = Vvl VA (4.8)

Consequently, the larger At, the smaller the relative shot noise in the
photon flow. With very small A we apparently need a long filter time to
suppress this shot noise.
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To determine the autocorrelation function Ry (t1,t2) of the Poisson pro-
cess Z(t) let us first consider ¢, > ¢;. The variables k(0, 1) and k(t1, =),
referring to adjacent but non-overlapping time periods, are then indepen-
dent Poisson variables with parameters A\t; and A(t2 — t1) respectively.
Thus we have:

E{k(0,t1)k(t1,t2)} = E{k(0,t1)}E{k(t1,t2)} =
Nty (ts — 1), =

E(t1,t2) = k(0,t2) — k(0,t1) = Z(t2) — Z(t1), =
E{Z(t1)[Z(t2) — Z(t:)]} Ry(ti,ts) —B{Z*(t1)} =

Rz(ti,t2) = MNti(ta —t1) + Nt + Xty =
= Mty + My (4.9)
Ifty <t = Rz(tl,tg) = >\2t1t2 + Ao (410)

Introducing the autocovariance Cz(t1,t2) of Z(t) we can write:

Rz(ti,t2) = Ntits+ Cz(t,ta) =
= Mtty + My U(ts — 1) + MUty — t2)  (4.11)

Regarding the stochastic variable X (¢), the time derivative of Z(t) and
representing the train of Dirac impulses at random time locations, we
have the time independent average value E{X (t)} = A = the rate pa-
rameter.

The autocorrelation function follows from successive partial differentia-
tion of the autocorrelation of Z(t) with respect to ¢; and ¢2, thus:

O?Ry(ty,ts)

Bx(tt) = D10ty

= A+ 6(ty — 1) (4.12)

Designating the time difference (¢t — 1) = 7, we arrive at the general
expression for the autocorrelation of a train of unit-value Dirac impulses
at random time positions (WSS ergodic signal):

Rx (1) = A2 + \6(7) (4.13)

The second term in equation (4.13) represents the covariance C(1) of
X (t), which equals in this case the variance C(0) since it is zero for
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every value of 7 except for 7 = 0. This is of course evident, since the
Dirac impulses are randomly distributed in time and are thus mutually
completely uncorrelated.

4.2 Frequency filtered Poisson process

By applying the Wiener Khinchin theorem to Rx(7) we can compute
the power spectral density:

+oo
Rx(r) & Su,(v) = / Ry(r)e— " dr = \35() + A (4.14)

which is inconsistent with physical reality since it implies an infinitely
high power signal. In practice there is always a frequency cut-off at say
V., owing to some (high frequency) filtering process. We might perceive
this as follows. The photon detection process involves conversion to
charge carriers that are subsequently fed into a filter network, e.g. a
first order RC filter. The RC-network acts on each individual charge
impuls ¢ (0-function) with a current response function h(t). If we now
assume for convenience that each single photon generates a charge carrier
(detection efficiency=1), implying also an average charge carrier rate A,
the resulting photo-current follows from a convolution of the Dirac §-
function train X (t) with h(¢):

I(t)
q

with h(t) the filter circuit smpulse current response function (Note: h(t) =

= X(t) > h(t) > Y () (4.15)

0 for ¢t < 0 and is a normalized function: [ h(t)dt = 1).
0

Hence we have:

Y(t) = h(t)*X(t):/Z&(t’—tk)h(t—t’)dt’:
0 k

D h(t—ty) =Y + AY (t) (4.16)
k
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Owing to the high carrier density in the charge flow, there will be a
large degree of overlap between subsequent responses. This will result in
a total current I(t) that shows a Gaussian (normal) distribution around
a mean value I. For the expectation value of Y (t) we thus find

o0

Y = B{v() = E{/X(t—t’)h(t’)dt’}
0
= /E{X(t—t’)}h(t’)dt’ = /\/h(t’)dt’ =AH(0) (4.17)
0 0

where for the last transition we have used:

H(2mjv) = /h(t’)e’%j”t’dt’ = H(0) = /h(t’)dt’ (4.18)
0 0

In the Fourier domain we write for the current power spectral density:
Sy (v) = [H@mjv)] Six (v)

N |H (2mjv) > 6(v) + X |H (2mjv)|* =

A2 H2(0) + X |H(2mjv)|? (4.19)

Evidently the power is now finite, as it should be. We obtain the auto-
correlation by taking the Fourier transform of the current power spectral
density Sy, (v):

Ry (1) = X2 H?(0) + A [h(7) * h(1)] (4.20)

where the first term on the right hand side gives the mean charge re-
sponse of the linear dynamic system, and the second term represents the
noise. Taking the autocovariance at 7 = 0 we obtain the variance of the
noise signal:

+o00 +o00
Cy(0) = A/h?(t)dt:A/|H(27rjy)|2dy=
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+o0
= 2>\/|H(27rjz/)|2dz/ (4.21)
0

in taking the last steps we have applied Parseval’s theorem and changed
from a double sided Sy, (—00 < v < +00) to a one-sided Sr: twice the
integral from 0 < v < oo to accomodate physically real frequencies.
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Chapter 5

Coherence phenomena

5.1 The Visibility function

The coherence phenomenon is directly coupled to correlation, and the
degree of coherence of an EM-wave field E‘(F, t) can be quantitativily
described by employing the auto- and cross-correlation technique for the
analysis of a stochastic process.

The electric vector of the wave field at a position 7 at time ¢, E(,t),
is a complex quantity, denoting the amplitude and phase of the field.
To assess the coherence phenomenon, the question to be answered is:
how do the nature of the source and the geometrical configuration of the
situation relate to the resulting phase correlation between two laterally
spaced points in the wave field?

This brings to mind Young’s interference experiment in which a primary
monochromatic source S illuminates two pinholes in an opaque screen,
see figure5.1. The pinholes S; and Sy act as secondary sources, gen-
erating a fringe pattern on a distant observation plane ¥p. If S is an
idealized monochromatic point source, the wavelets issuing from any set
of apertures S7 and S> will maintain a constant relative phase; they are
precisely correlated and therefore mutually fully coherent. On the ob-
servation plane ¥ a well-defined array of stable fringes will result and
the radiation field is spatially coherent. At the other extreme, if the pin-
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holes S; and S> are illuminated by separate thermal sources (even with
narrow frequency bandwidths), no correlation exists; no fringes will be
observable in the observation plane ¥ and the fields at S; and S are
said to be incoherent. The generation of interference fringes is seemingly
a convenient measure of the degree of coherence of a radiation field. The
quality of the fringes produced by an interferometric system can be de-
scribed quantitativily using the Visibility function V:

Imaz - Imzn
Vv =-=_""7" 5.1
[maa: + Imin ( )

here I,,,4, and I,,;, are the irradiances corresponding to the maximum
and adjacent minimum in the fringe system.

5.1.1 Young’s dual beam interference experiment

To assess the mutual coherence between two positions in a radiation
field in a quantitative fashion, consider the situation displayed in fig-
ure 5.1, with an extended narrow bandwidth radiation source S, which
generates fields E(7,t) = E(t) at S; and E(7,t) = Ey(t) at S, respec-
tively. Interalia: no polarization effects are considered, and therefore a
scalar treatment using E(7,t) will suffice.

If these two positions in the radiation field are isolated using an opaque
screen with two small apertures, we are back to Young’s experimental
set-up. The two apertures serve as sources of secondary wavelets, which
propagate out to some point P on the observation plane Y. The resul-
tant field at P is:

Ep(t) = Cy-Ey(t—t1) + Cy - Ex(t — t3) (5.2)

with ¢; = ry/c and t2 = r2/c, r1 and r2 representing the pathlengths to
P as measured from S; and Ss, respectively. This expression shows that
the field at the space-time point (P,t) can be determined from the field
that existed at Sy and Sy at (¢t —#1) and (¢ —t2), respectively, these being
the instants when the light, which is now overlapping at P, first emerged
from the apertures. The quantities C; and Cs are so-called propagators,
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Figure 5.1: Young’s experiment using a quasi-monochromatic source S
illuminating two pinholes Sy and Sy. Credit Hecht(1987).

they mathematically reflect the alterations in the field resulting from it
having transversed either of the apertures. For example, the secondary
wavelets issuing from the pinholes in the Young set-up are out of phase
by /2 radians with the primary wave incident on the aperture screen.
In that case, Cy and C, are purely imaginary numbers equal to e'"/2.

5.1.2 The mutual coherence function

The resultant irradiance at P, averaged over some time interval which
is long compared to the coherence time, is:

I= E{Ep(t) -E;;(t)} (5.3)
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Employing equation (5.2) this can be written as:
I = C‘lé’l*E{El(t—tl (-t }
+ C,CiE {E2(t—t2 St — ty) }
+016'5E{E1(t—t1 S (t— o) }
+ CrCLE { “(t—t1) - Bt — t2)} (5.4)

It is now assumed that the wave field is wide sense stationary and ergodic,
see equations (3.2) and (3.3), as is almost universally the case, i.e. the
statistical nature of the wave field does not alter with time and the time
average is independent of whatever time origin we select. Accordingly,
the first two expectation values in equation (5.4) can be rewritten as:

Is, = E{El(t) -E”;(t)} and Is, = E{Eg(t) : E;(t)} (5.5)

where the time origin was displaced by amounts ¢; and t5, respectively.
The subscripts for the irradiances used here underscore the fact that they
refer to the values at points S; and Ss. Furthermore, if we introduce the
time difference ™ = t5 — t1, the time origin of the last two terms can be
shifted by an amount t5 yielding;:

COE{E(t+7) B3t)} + CrOE{Ei(t+7)- B0} (56)
This expression comprises a complex quantity plus its own complex con-
jugate and is therefore equal to twice its Real part:

2 Re [élé;E {El(t+r)-l§72*(t)}] (5.7)
As noted before, the C-coefficients are purely imaginary, i.e. C} CN'Q* =
CiCy = |C1]|Cs-
The expectation value contained in expression (5.7) is a cross-correlation

function, which is denoted by:

Pis(r) =B {Bi(t+7) B5(1)} (5.8)
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This equation is referred to as the mutual coherence function of the
wave field at positions S; and S;. Making use of the definitions above,
equation (5.4) now takes the form:

I = |C1|?Is, + |Co|*Is, + 2|C1||Ca| ReTyo(r) (5.9)

The terms |C1|?Is, and |Cs|*Ts, are the irradiance at P, arising when
one or the other of the apertures is open alone: either Cy = 0 or C2 = 0.
Denoting these irradiances as I; and I» one can write:

I = I +1,+2|C,||Cq| ReTa(7) (5.10)

If S; and S; are made to coincide, the mutual coherence function be-
comes the autocorrelation function:

Pu(r) = B (r) = B{Ei(t+7)- Bi (1)} (5.11)

or:

Poa(r) = Ri(r) = B{B:(t+7)- B5(1)} (5.12)

One can imagine that two wave trains emerge from these coalesced pin-
holes and somehow pick up a relative phase delay 7. These autocorrela-
tion functions are also called self-coherence functions.

In the situation at hand 7 = 0, since the optical path difference (short-
hand: OPD) goes to zero. Hence:

[11(0) = R, (0) = E{El(t)-Ef(t)} - E{|E1(t)|2} = Is, and
22(0) = Ri,(0) = E{Bat) B3(1)} = B{B(t)P} = Is,  (5.13)
The expressions in (5.13) represent the average intensity (irradiance) of

the radiation field at positions S; and Sy respectively, this was already
introduced and discussed in sections 2.4 and 2.5.
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5.2 The complex degree of coherence
From equation (5.10) and the selfcoherence functions one can now write:

(I - I)?
[T11(0) - T2 (0) ]2

Hence, the normalized expression for the mutual coherence function can
now be defined as:

1Cy||Ca| = (5.14)

Pra(r) B E {E1 (t+7) -E;(t)}

T T2 [E{j5 0k} B{E0k)}]
(5.15)

This quantity is referred to as the complex degree of coherence,
equation (5.10) can now be recast into its final form:

F2(r) =

I =1 + 5 + 2(I1 - b)? ReAs(7) (5.16)

which is the general interference law for a partially coherent radiation
field.

The quantity 412(7) simultaneously gives a measure of the spatial coher-
ence by comparison of two locations in space (S; and Sy in the above
case) and the coherence in the time domain by accounting for a time lag
T between both signals.

#12(7) is a complex variable and can be written as:

Ma(T) = [a(r)] - 2 (5.17)

From equation (5.15) and the Schwarz inequality it is clear that 0 <

[712(7)| < 1. The phase angle 115 (7) of 412(7) relates to the phase angle

between the fields at S; and S and the phase angle difference concomi-

tant with the OPD in P resulting in the time lag 7, as shown in equation

(5.8). For quasi-monochromatic radiation at a mean wavelength A and

frequency 7, the phase difference ¢ due to the OPD can be expressed as:
2T

¢ = T(M —ry) = 2707 (5.18)
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If we designate a phase angle a12(7) between the fields at Sy and Ss, we
have
P12(7) = [a12(7) — 9)].
Hence:

Rey12(1) = |F12(7)| cos [ona(T) — @] (5.19)
Substitution of this expression in the interference law for partially coher-
ent radiation given in equation (5.16) yields for the intensity observed
at point P on the observation plane Xo:

I =1 + L + 2(I1 - I)? |F12(7)| cos [ar2(7) — ¢)] (5.20)

The maximum and minimum values of I occur if the cosine term in
equation (5.20) equals +1 and —1, respectively. The Visibility V' (see
definition (5.1)) at position P can therefore be expressed as:

21, - I,)®

V=
I + 15

[F12(7)] (5.21)
In practice, frequently things are (or can be) adjusted in such a way that
I, = I,, giving rise to the following simplified expressions for the total
irradiance I and Visibility V:

I = 2Io {1+ [12(7)[ cos [an2(7) = 9]} and V' = [Ji2(7)]  (5.22)

Note that in this case the modulus of the complex degree of coherence is
identical to the wvisibility of the fringes ! This then provides an exper-
imental means of obtaining |J12(7)| from the resultant fringe pattern.
Moreover, the off-axis shift in the location of the central fringe (no OPD
— ¢ = 0) is a measure of a;2(7), the relative retardation in phase of the
fields at S; and S;. Thus, measurements of the visibility and the fringe
position yield both the amplitude and phase of the complex degree of
coherence.

5.3 Temporal coherence

Temporal coherence is characterised by the coherence time 7. . The
value of 7, follows from the finite bandwidth of the radiation source un-
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der consideration as indicated in section 2.1.

These effects can quantitatively be assessed with the aid of the Wiener-
Khinchine theorem:

“+o00
S(v) = / R(1)-e 2™"Tdr (5.23)

+00
R(r) = / S(v) - 2™ dy (5.24)

Take as an example a Gaussian shaped spectral line profile, i.e.
L \2 £ \2
Sw) ~e (2) & R(r) ~ e (5) (5.25)

As can be seen from the FT (indicated by < in expression(5.25), the
wave packet corresponding to this line profile has an autocorrelation
function that is also Gaussian with a characteristic width 7., moreover
the autocorrelation R(T) equals the autocovariance C(7). This corre-
sponds to a wave train with a Gaussian shaped envelope for the wave
amplitude, see again figure (3.1) in section 2.1.

For spectroscopic measurements at infrared and shorter wavelengths one
can directly disperse the incoming radiation beam with the aid of a wave-
length dispersive device, like for instance a transmission or a reflection
grating, and measure the resulting intensity distribution (i.e. the spec-
trum). However for spectroscopy at radio and submillimeter wavelengths
one employs an indirect method. The incoming wave signal is fed into a
correlator that produces the temporal coherence function R(7), a subse-
quent FT of this function yields the spectral distribution S(v) by virtue
of the Wiener-Khinchine relation.

5.4 Longitudinal coherence

Associated with the coherence time 7. is the so-called coherence length
l. = cTe.
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Figure 5.2: The influence of the coherence length on the interference
pattern of two diffracted coherent thermal radiation sources S; and Ss.
Credit Hecht(1987).

Problem: Show that the coherence length can also be expressed as
I = A2/AX in which A refers to the equivalent of Av in the wave-
length domain.

Now consider an EM-wave that propagates along a vector ¥, and mark
two positions P; and P, on this line of propagation at a mutual dis-
tance Ris. If Ris < I, there will be a strong correlation between the
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EM-fields at P; and P, and as a consequence interference effects will be
possible. In the case of Ry3 > I., no interference effects are possible.
This effect (i.e. potential interference yes or no) relates to the so-called
longitudinal correlation or longitudinal spatial coherence.

This effect can be clearly demonstrated by considering the wave trains in
Young’s interference experiment (see figure5.2 ). The diffracted beams
emanating from S; and Ss, which are coherent radiation sources, cause
an interference pattern. However, in the case of large path differences
the interference contrast will diminish, since corresponding wave packets
in the stochastic signal no longer overlap (see figure 5.2: packet H; and
H, = packet I} and Hs).

5.5 Spatial or lateral coherence

Spatial coherence (also: lateral coherence or lateral correlation) has to
do with the spatial extent of the radiation source.

Problem: Prove that for 7 < 7.:

Fa2(7) = F12(0) - 277 (5.26)
with |[312(7)| = |512(0)| and a fized phase difference a12(7) = 2701, U
represents the average frequency of the wave carrier.

In the following treatment of spatial coherence, it is implicitly assumed
that the frequency bandwidth of the radiation source is suffiently narrow
that the comparison between two points with respect to spatial coher-
ence occurs at times differing by At <« 7,

Query What is the quantitative relation between the brightness distri-
bution of the spatially extended radiation source and the resulting phase
correlation between two positions in the radiation field?

Approach Consider again Young’s experiment for the case that the
radiation source S is extended and illuminates the pinholes S; and Ss
(actually shown in figure 5.1). In the observers plane ¥, the interference
is given by the expectation value of the product E; (t)-E3(t) = E{E,(t)-
E3(t)} = T'12(0) with the subscripts 1 and 2 referring to the positions Py
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p (a)

Figure 5.3: Relating ¥12(0) to the brightness distribution of an extended
radiation source S: configuration for demonstrating the Van Cittert-
Zernike theorem. Credit Hecht (1987).

and P in the Y-plane. If E; and E» are uncorrelated, then |f‘12(0)| = 0.
In the case of full correlation |¥12| (: IT12(0)] /(I - Ig)%) =1, for partial

correlation one has 0 < |[¥12(0)| < 1.

The extended source in Young’s experiment is a collection of non-coherent
infinitesimal radiators, this obviously reduces the contrast in the inter-
ferogram. This contrast can be observed and is described by the afore
mentioned Visibility function V:

[maa: Imin ~
Vo= TR 0 5.27
Imaz Imzn |712( )| ( )

5.6 The Van Cittert-Zernike theorem

So how does one relate 15(0) (or T'12(0)) to the brightness distribution
of the extended radiation source S?
This can be done in the following way (see figure 5.3). Locate S, a QM-
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incoherent source, in a plane o, with an intensity distribution I(y, z).
Consider next the observation plane ¥ parallel to o, [ is perpendicular
to both planes (coincident with the X-axis) connecting the centre of the
extended source (y = 0,z = 0) to the zero reference in ¥ (Y =0, Z = 0).
Select two positions P; and P,. The objective is to describe the value
of 12(0) in this plane, i.e. the coherence of the radiation field in ¥. To
assess this, consider a small (infinitesimal) radiation element dS in the
source at distances R; and Ry from P; and P, respectivily. Suppose now
that S is not a source but an aperture of identical size and shape, and
suppose that I(y,z) is not a description of the irradiance (or intensity
distribution) but, instead, its functional form corresponds to the field
distribution across that aperture. In other words imagine that there is
a transparancy at the aperture with amplitude transmission character-
istics that correspond functionally to the irradiance distribution I(y, z).
Now imagine that this aperture is illuminated by a spherical wave con-
verging towards the fixed point P», so that a diffraction pattern will
result centered at P,. This diffracted field distribution, normalised to
unity at Ps, is everywhere (e.g. at P;) equal to the value of 4;2(0) at
that point. This is the Van Cittert-Zernike theorem.

In the limit that Ry and Rs are much larger than the source diameter and
the relevant part of the X-plane we have the equivalent of Fraunhofer
diffraction, this condition is practically always satisfied for astronomi-
cal observations. In that case, the van Cittert-Zernike theorem can be
expressed mathematically as:

1"“(?):// 1(§3) - =5 43 (5.28)

1(6) :A‘Q//E NG R e (5.29)

I (ﬁ) is the intensity distribution of the extended radiation source as a
function of a unit direction vector €} as seen from the observation plane
3. Taking the centre of the extended radiation source S as the zero-
reference for €1 (coincident with the central axis { in figure (5.3)) and
assuming a relativily small angular extent of the source one may write

—

I(Q) = 1(8,,0.) and dQ = df,df., where 0, and 6. represent two or-
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thogonal angular coordinate axes across the source starting from the
zero-reference of ().
f‘(F ) is the coherence function in the ¥-plane, the vector 7 represents an
arbitrary baseline #(X,Y") in this plane with d¥ = dY'dZ (in the above
example PPy = p, — TPy)-
Expressions (5.28) and (5.29) for T'(7) and I(Q) show that they are
linked through a Fourier transform, except for the scaling with the wave-
length A. This scaling might be perceived as a ”true” Fourier transform
with the conjugate variables 0 and 7/, i.e. by expressing ¥ in units of
the wavelength A\, writing the van Cittert-Zernike theorem as the Fourier
pair:

I(§) & T(F/N (5.30)

The complex spatial degree of coherence, 4(), follows from:

L(7)
J Lo 1)1

i.e. by normalising on the total source intensity.

Note: Although the extended source S is spatially incoherent, there
still exists a partially correlated radiation field at e.g. positions P; and
P5, since all individual source elements contribute to a specific location
P in the Y-plane.

End of Note

() = (5.31)

For a derivation of the Van Cittert-Zernike relations, consider the ge-
ometry given in figure 5.4.

The observation plane ¥ contains the baseline vector #(Y, Z) and is per-
pendicular to the vector pointing at the centre of the radiation source.
The angular coordinates 6, and 6, across the source (see above) corre-
spond to the linear coordinates of the unit direction vector Q(Q x, 0y, Qz),
i.e. the direction cosines of {} relative to the X,Y, Z coordinate system
(0% + Q3 + Q% = 1). The spatial coherence of the EM-field between the
two positions 1 (for convenience chosen in the origin) and 2 is the out-

come of a correlator device that produces the output E {El (t) - E;(t)}

In reality positions 1 and 2 are not point like, they represent radio an-
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tennae or optical reflectors, this issue will be addressed later on. From
the geometry displayed in figure 5.4, regarding the Van Cittert-Zernike
relations, one can note the following;:
= If I(§) = I,6($), i.e. a point source on the X-axis, the Van Cittert-
Zernike relation yields |D(7)| = Ip and |5(7)| = 1: a plane wave hits the
full Y Z-plane everywhere at the same time, full coherence is preserved
(by definition) on a plane wave front.

= Next, let’s consider an infinitesimal source element in the direction
ﬁo — Iots(ﬁ—ﬁg). The projection of ﬁo on the ¥ —plane is ﬁg (Qy,Qz).
There will now be a difference in path length between positions 1 and 2

given by the projection of ¥ on (y, i.e. 7.0 = QyY + Q4 Z. Then:
. . 2mivg (14207 (2 i t+—2’”'"’0"’)
Ei(t) = Eo(t) e ( e

) = E() (t) - €
E3(t) = Eo(t) - e 2mivot (5.33)

Therefore:

2miflg. 7 2miflg. 7

E{A0)- B0} =E{|B0P} 75 = L) e (5.34)

Integration over the full source extent(straight forward integration, since
all source elements are spatially uncorrelated) yields:

f(F):// Io(§) - 2™ %7/2 4y (5.35)

N( ) f fsoume [O(Q') X eQniﬁ.F/)\dﬁ
Y = = =
S S To(2)d2

The meaning of this relationship is, in physical terms, that f‘(F ) at a
certain point represents a single Fourier component (with baseline 7*) of
the intensity distribution of the source with strength TI'(7)d7. A short
baseline (small ||) corresponds to a low frequency (spatial frequency!)
component in the brightness distribution I(6,,6.), i.e. coarse structure,
large values of || correspond to fine structure in I(8,,6.). The diffrac-
tion limited resolution in aperture synthesis corresponds to:

(5.36)

|Fmaz| = Lmaz = 0mzn = (537)

2Lmax
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QM—source S

“.radiation element dS
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Figure 5.4: Van Cittert Zernike relation: reference geometry.

The factor 2 in the denominator of the expression for 6,,;, follows from
the rotation symmetry in aperture synthesis.

Example Consider a one dimensional case. This can be done by taking
the slit source of uniform intensity shown in figure 5.5 , slit width b and
running coordinate . The observation plane ¥, running coordinate y,
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O * 4y
+b12 T _— ‘P

fﬂ*, — *% (b)

Figure 5.5: The coherence function 412(0) for a uniform slit source.
Credit Hecht (1987).

is located at large distance [ from the slit source (i.e. the Fraunhofer
limit is applicable). The source function can be expressed as the window
function II (¢/b), in angular equivalent I (8/5y), with 8y = b/I.
Application of the Van Cittert-Zernike theorem I(}) < ['(7/\) yields:

I (%) & Bosine (%) = fBpsinc (i—?) (5.38)

with sinc(z) = sinwz/(wz). The modulus of the normalised complex
coherence function becomes:

Posinc [(yb) /(AD)]
Bo

W)l =

‘ = ‘sinc (i—?)‘ =V = Visibility  (5.39)

Note that:

e Fnlarging b with a factor 2, shrinks the coherence function with the
same factor. This is of course a direct consequence of the scaling
law under Fourier transform.
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e The width of the coherence function follows from: yfy/A = 1 =
y = A/Bo. If the radiation source exhibits a smooth brightness
distribution over the angle 8y = A radians, as is the case with the
slit source, then v(y) also displays a smooth distribution over a
distance of A/A meters.

e If the brightness structure of a radiation source covers a wide range
of angular scales, say from a largest angular scale A to a smallest
angular scale 0 (in radians), then the spatial coherence function
shows a finest detail of A\/A and a maximum extent of ~ A/J in
meters.

5.7 Etendue of coherence

Consider the two-dimensional case of a circular source of uniform in-
tensity with an angular diameter 4, the source brightness distribution
can then be described as a circular two-dimensional window function:
I(§) = T (#/6,). To compute the complex degree of coherence in the
observation plane ¥ take again two positions, position 1 in the centre
(origin, as before) and position 2 at a distance p from this centre point.

Applying the van Cittert-Zernike theorem yields for T'(p):

(05/2) J1(70sp/N)
p/A

where J; represents the Bessel function of the first kind. Normalisa-

tion to the source brightness, through division by (76%)/4, yields the
expression for the complex degree of coherence:

I (%) & D(p/N) = (5.40)

. 2.J1(mbsp/N)
= = Al A1
o) = =00 (5.41)
The modulus of the complex degree of coherence is therefore:
. 2.J1 (u)
7(p)| = ‘ ” (5.42)
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with the argument of the Bessel function u = msp/A. One can derive
the extent of the coherence in the observation plane ¥ by evaluating
Ji(uw). By selecting u = 2, |¥(p)] = J1(2) = 0.577, i.e. the coherence
in ¥ remains significant for v < 2, or p < 2\/(n6;). The area S in ¥
over which the coherence remains significant equals mp® = 4\*/(76?).
In this expression, 7r0§ /4 equals the solid angle Q.,,... subtended by the
radiation source. Significant coherence will thus exist if the following
condition is satisfied:

€= SWouee < N? (5.43)

The condition € = SQ..u... = A2 is called the Etendue of Coherence, to
be fulfilled if coherent detection is required!

Example Consider a red giant star, of radius ro = 1.5 x 10'! meter,
at a distance of 10 parsec. For this object #; = 10~ ° radians. If this
object is observed at A = 0.5um, the value of the coherence radius p, on
earth, on a screen normal to the incident beam is p = 2X\/(wf;) = 32
cm. In the infrared, at A = 25um, the radius p is increased fifty fold to
~ 15 meter. In the radio domain, say at A = 6 cm, p ~ 35 km.

In general, good coherence means a Visibility of 0.88 or better. For a uni-
form circular source this occurs for u = 1, that is when p = 0.32)/6. A
narrow-bandwidth uniform radiation source at a distance R away yields:

p = 0.32(\R)/D (5.44)

This expression is very convenient to quickly estimate the required phys-
ical parameters in an interference or diffraction experiment. For exam-
ple, if one puts a red filter over a 1-mm-diameter disk-shaped flashlight
source and stands back 20 meters from it, then p = 3.8 mm, where the
mean wavelength is taken at 600 nm. This means that a set of apertures
spaced at about 4 mm or less should produce clear fringes. Evidently
the area of coherence increases with the distance R, this is why one can
always find a distant bright street light to use as a convenient source.

Important: Remember, as stated in section 1.3.1, that throughout the
treatment of spatial coherence it was assumed that the comparison be-
tween the two points occurs at times differing by a At <« 7.. If this
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condition is not fulfilled, for example because the frequency bandwidth
of the radiation source is too large, interferometric measurements will
not be possible (see section on temporal coherence). Frequency filtering
will then be required to reduce the bandwidth of the source signal, i.e.
make it more monochromatic.

5.8 Aperture synthesis

As already indicated above, the positions 1 and 2 in the observation
plane ¥ are in practise not pointlike, but encompass a finite aperture
in the form of a telescope element of finite size, say a radio dish with
diameter D. This dish has then a diffraction sized beam of A\/D. In that
case the Van Cittert-Zernike relation needs to be ”weighted” with the
telescope element (single dish) transfer function H({}). For a circular
dish antenna H(€}) is the Airy brightness function, well known from the
diffraction of a circular aperture and detailed in a previous section. The
Van Cittert-Zernike relations now become:

2mid. 7

f’(F‘):// I(Q) - H(Q) - e ™3 d (5.45)

I() - H(G) =12 / /2 () - e = g7 (5.46)
-plane

The field of view scales with A/D, e.g. if A decreases the synthesis reso-
lution improves but the field of view reduces proportionally!

So, in aperture synthesis the incoming beams from antenna dish 1 and
antenna dish 2 are fed into a correlator (multiplier) that produces as out-
put the product Ei (t)- E5(t). This output is subsequently fed into an in-

tegrator/averager that produces the expectation value E {El (t)- B3 (t)} =
I'(7). By applying the Fourier transform given in (5.46), and correct-

ing for the beam profile of the single dish H(f}), the source brightness
distribution I(£}) can be reconstructed.
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Important: Indirect imaging with an aperture synthesis system is
limited to measuring image details within the single pizel defined by the
beam profile of an individual telescope element, i.e. a single dish!
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Correlating the
instantaneous intensity

6.1 The autocorrelation of I(t)

The autocorrelation of the instantaneous intensity is given by:

Ri(r) = E{I(t+7)-It)} = I({t) I{t+7) =
= E@) E*t)-E{t+71) -E*(t+71) (6.1)

To evaluate expression (6.1), expand this in the real and imaginary parts

of the analytic signal E(¢):

E(t)-Ex(t)-E{t+71)-E*(t+71) =
= Re2E(t) - RE(t + 1) + Im2E(t) - Im®E(t + 1) +
+ ReE(t) - Im*E(t + 1) + Im?E(t) - RE(t + 1)

(6.2)

These four separate real correlation functions can be evaluated separately
by using the following relation for the Gaussian distributed random vari-

71
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able a(t):

() - a2t +7) = a2(t) - 2t +7) +2 (a(t) “alt + T))2 (6.3)

Using the equalities (prove this):

= = = = 1
REE(t) = Im?*E(t) = ReE(t+71) = Im?E(t+71) = 5[

ReB(t) - ReB(t + 1) = ImE(t) - ImB(t+ 1) = %Re[f‘n(r)]

—ReE(t) - ImE(t +7) = ImE(t) - ReE(t + 1)

% Im[T11 ()] (6.4)

in which T'j;(7) is the complex autocorrelation (selfcoherence) function
of the analytic signal E(t), i.e. T11 (1) = E(t +7) - E*(t). Thus we get:

Ri(r) = P+ [Tu(n)) = (14 ju(n)) (6.5)

with 411 (7) the normalized autocorrelation coefficient.

This result can also be expressed in a form showing the correlation
between the instantaneous fluctuation AI(t) about the mean value I,
ie. AI(t) =1I(t) — I, this results in:

AI(t)-AI(t +1) = A (6.6)

In particular for 7 = 0 (full correlation |§11(7)] = 1), one finds again
the result for the variance of the intensity, (AI)2 = I?, which was ob-
tained earlier directly from the intensity probability density function
P(I) derived in the previous section. So the intensity fluctuations are
also expected to be partially coherent, since the amplitude and phase
fluctuations in a thermal signal tend to track each other. An impression
of such a fluctuating wave signal is given in figure6.1, both in absolute
value and centered around the avarage value I: AT =1 —1.




6.2. The influence of band-limited radiation sensing 73

I(r)

(a)

Al =1 =1)

Figure 6.1: Partially coherent intensity fluctuations in a thermal radia-
tion source. Both absolute values I and relative values AI =1 — I are
shown. Credit Hecht (1987).

6.2 The influence of band-limited radiation
sensing

The autocorrelation function derived above refers to the instantaneous
intensities. If an optical analytic signal E(t) is considered, the high
frequency carrier 7 is of the order 10'° Hz, the intensity fluctuation varies
much slower than E(t), but the time scale is still very short considering
7. ~ (Av)~L. For atomic transitions 7. = 107 — 107195, and thus Av
is of the order 10° Hz. Although 7. contains of the order of a million
oscillations, most measuring devices, like photo-electric devices and the
associated electronic correlators, have response times slower than 1 GHz.
In practice, therefore, one has to deal with a minimum resolving time T’
of the band limited sensing devices. If the detection efficiency, i.e. the
number of photo-electrons per incident photon is «, with a < 1, we can
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write a short-term intensity average as:

() =2 [ Ty (6.7)

1
5T

N

It is assumed here that a remains constant over the spectral range Av
and, more importantly, that any variations in time lag of the photo-
electric emission process are negligible. Therefore one also has I = al.
The variance AIZ of this time-averaged signal can be expressed as:

[C1(0)], = (A7) = <Q—I> //% (8" =t at'dt”  (6.8)

where use was made of the equality:

AI(t+t") - AI(t +t") = Py (t" —t)]? (6.9)

The double integral for averaging over the resolving time T can be
reduced to a single integral by considering the appropriate surface ele-
ment in the #'-t" plane, as shown in figure 6.2. Substituting the surface
element (T — |7|)dr yields:

i = () [ @1 buerar = (4D o0

with &£(T') defined as:

T
er) = [ (1-F) - huepar (6.11)
-T
Since |y11(7)| < 1 it follows that {(T) < T. If T « 7.(= 1/Av) one
obtains ¢(T) ~ T, i.e. the variance becomes [C7(0)]r = o2I%. This
result is the same as without averaging and is to be expected, since for T’
smaller than the coherence time I (t) faithfully tracks the instantaneous
intensity I(¢). If on the other hand T > 7., which is normally the case,
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T=+4T."

-T2 A2

j 7T ’ surface element:
d de-(T- )

Figure 6.2: Illustration of the coordinate transformation used to trans-
form the double integral of equation (6.8) to a single integral.

the integral tends to an upper limit £(c0) = [ |y11(7)|?dr ~ 7, since
|v11(7)| vanishes for |7| > 7.. In this case the variance becomes:

a’I*r,
T

i.e. the original value gets reduced by 7./T, hence for sensitive corre-
lation measurements one has the keep the resolving time T' as short as
possible!

The intensity fluctuation described above arises solely from the anal-
ysis of the wave character of the radiation and results from the coherence
properties of quasi-monochromatic waves. On top of this fluctuation one
has to consider the shot-noise character of the photo-electric emission
process, which arises purely from the quantum character of the radia-
tion. The total variance is therefore obtained by adding the shotnoise
variance to [C7(0)]r above, with the result:

(AI7)2 = ol <1 + %(T» (6.13)

[Cr(0)]r =

(6.12)

It makes no difference whether I is treated as the square of the electric
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field vector, or as a photon arrival probability density. In a similar way
the fluctuation in photon number in a measurement time interval T can
be derived to be:

(Ant)? = olIT + o*T*TE(T) = ar <1 + ”Tfp(T)> (6.14)

Hence, for T <« 7. one arrives at the characteristic variance for the

Bose-Einstein statistics (Anr)? = (1 + 72). However for T > 7. the
variance changes to (Ant)? = n(1 + ar./T) = A(l + alr.) This is
characteristic for n bosons distributed among T'/7, cells of phase space.
This expression demonstrates that the deviation from the Poisson limit
is given by the product of the count rate al and the coherence time
7. = [0 |m1(7)|*dr determined by the light spectrum.

Physically, the deviation from Poissonian statistics can be attributed
to the probability that two wave packets overlap. When this occurs this
can lead to four photons (constructive interference) or no photons (de-
structive interference) and anything in between. It is proper to speak of
interference in this situation since these photons are in the same quan-
tum state, and the abnormal density fluctuation occurs in any ensemble
of bosons occupying the same quantum state.

The arrival density fluctuation (An)2 can also be derived directly
from the probability distribution of the photo-electric counts, which im-
mediately results in the full expression for (Anr)? as given in equation
(6.14). This stipulates again the power of quantum theory relative to
the classical wave picture!

The coherence length of the light is the quantity in the wave picture
that is complementary to the length of the phase cell in the particle
picture. The term nr,/T gives the mean number of counts per unit
cell of phase space and is the analogue of the degeneration parameter
& encountered in quantum statistics for the number of particles in the
same quantum state. The expression § = A7./T = alr. derived here
is generally applicable, also for ’diluted’ photon beams and immediately
gives the magnitude of coherence effects in fluctuation analyses. It is of
course also evident that in order to have a measurable effect for 7. ~
1079 s a very large intensity I is required for the radiation source. This
issue will be elaborated in some detail further on for the case of the
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Figure 6.3: Illustration of the ’bunching’ effect of equation (6.9) (top)
with an example of actual photon arrival times (bottom).

optical correlation interferometer used by Brown and Twiss to measure
stellar diameters.

6.3 Photon bunching

When a photon detector illuminated by 'Gaussian light’ shows fluctua-
tions in excess of Poisson noise, this should imply that the photon arrival
does not occur fully at random but does exhibit a certain clustering or
'’bunching’ that is characteristic for bosons.

Consider a photon detector illuminated by polarized light with instan-
taneous intensity I(¢). Furthermore consider two small time intervals:
from ¢ to t+dt and from t+ 7 to t+ 7+ dr. The probability of observing
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a photo-electric count at both times ¢ and ¢ + 7 is then expressed as
a?I(t)I(t + 7)dtdr, and the ensemble average o®I(t) - I(t + 7)dtdr gives
the probability of finding two counts separated by an interval 7. Normal-
izing this to the probability of one count at ¢ within dt we arrive at the
conditional probability p.(7)dr of obtaining a second count 7 seconds
after the first, i.e.:

a?I(t) - I(t + 1)dtdr
al(t)dt

pe(T)dr = =al [1 + |’)/11(T)|2] dr (6.15)

(see equation(6.9)).

Since |y11(7)| =~ 1 for 7 < 1/Av and |y11(7)| € 1 for 7 > 1/Av, the
conditional probability always starts at the value 2aldr and declines to
aldr for large 7. The chance of detecting a photon close to another
photon is therefore twice as large as for classical particles. Figure (6.3)
shows an example of this ’bunching effect’ for a Gaussian spectral fre-
quency profile (7. ~ (2Av)~!) together with a counting distribution with
degeneracy parameter § ~ 1. The clustering is quite apparent. These
results do not hold for maser or laser light in which intensity saturation
effects occur. In this case the fluctuation will appear to be intermediate
between the illustrated examples.

6.4 Stellar intensity correlation interferom-
etry

R. Hanbury Brown and Richard C. Twiss have pioneered the use of cor-
relation interferometry both in the radio and optical wavebands. A brief
discussion of the principle of their stellar intensity correlation interfer-
ometer is given here, the measurement set up is shown in figure 6.4.

Consider the light beams incident on the two mirrors. One can now
write for the cross-correlation of the intensity fluctuations Al and Als:

1- -
AIl(t) . A[Q(t-FT) = 5[1[2|’)/12(T)|2 (616)
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R. Hanbury Brown & R. Q. Twiss,
A Test of a New Type of Stellar Interferometer on Sirius ,

am 1 . ) Prediction from astrophysical theory is

0.0063"
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PO 0.0068" + 0.0005"
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Fig. 2. Comparison between the values of the normalized cor-

relation coefficient 1*(d) observed from Sirius and the theoretical

values for & star of angular diameter 0-0063°. The errors shown
age the probable errors of the observations

i AL First measurgment of stellar diameter
RECORDING MOTOR in 30 years
Fig. 1. Simplifled diagram of the apparatus

Figure 6.4: The WWII search lights in Manchester with which Hanbury
Brown and Twiss measured the diameter of Sirius in 1956 and the cor-
relation as a function of baseline obtained in this measurement (right).
Credit Hanbury Brown and Twiss (1956).

This formula is analogous to the expression of the autocorrelation for
which positions 1 and 2 coincide, v12(7) is the complex degree of co-
1

herence, the factor 5 arises from the fact that the radiation beam is

unpolarised. For 7 = 0 one has AT (t) - AL(t) = 311 L|712(0)]?, with
[712(0)| = V, the visibility function that can be employed to assess the
angular diameter 65 of a star. Next, consider the stellar disk as a cir-
cular distribution of incoherent point sources with uniform brightness,
so that its visibility fringes are described by equation (5.41) with the
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substitution p = h:

Ty (whé,/X) ‘

=2 =
(o) =2 [ 252

(6.17)

Since the resolving time T of the measuring equipment substantially
exceeds the coherence time of the light beams, it reduces the coherence
effect by 7./T as explained in the previous sections. In most case the
assumption y12(7) = 412(0)y11(7) can be made, hence:

1.7
AL (D)1 - AL ()1 = 51112%712(0)? (6.18)

With their stellar intensity correlation interferometer Brown and
Twiss measured this product (the correlator is a multiplier) at vari-
ous separations h by changing the distance between the two telescopes,
thereby tracking the function |y12(0)|? as a function of h. The angular
diameter 6 is then obtained by fitting the theoretical coherence pattern
of equation (6.17), (6.18) to the measurements. The first star for which
a diameter was determined this way was Sirius, for which Brown and
Twiss found 65 = 0.0068" £ 0.0005".

The big potential of the intensity interferometer above the Michelson
interferometer is that the separation h can be made much larger because
one does not, have to worry about spoiling the phase of the lightwaves: in
a Michelson interferometer the distance between the two mirrors must be
kept constant to within a fraction of a wavelength, whereas the intensity
interferometer ignores phase effects. An added bonus is that the quality
of the mirrors is not critical, Brown and Twiss used in fact two World-
War IT search-light mirrors for their first experiments. A list of angular
diameters for stars measured by Brown with the intensity interferometer
at Narrabri is given in table 6.1.

The main limiting factor for the intensity interferometer is the very
high photon arrival probability density that is required in order to ob-
tain a non-negligible value of the degeneracy parameter § = 7,7, (1,
is the average photo-electron rate). Consequently, only stars with mag-
nitude V' < 3 can be measured. This constraint gets worse at shorter
wavelengths and the method cannot be used in the ultraviolet or X-rays.
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Table 6.1: List of stars measured at the Narrabri Observatory

star Spectral angular angular
type diameter diameter
(uniform disk) (limb-darkened disk)
in milliarcsec  in milliarcsec

BCru  BO.5IV  0.705+0.025 0.728+0.026

v Ori B21III 0.74+£0.05 0.76£0.05
eCMa B2II 0.78+0.05 0.81+0.05
aPav B3IV 0.77£0.06 0.80+0.06
€ Ori BOIa 0.70£0.05 0.72+0.05
a Eri B51IV 1.86+0.07 1.93+0.08
aGru B5V 0.98+0.07 1.024+0.07
aleo B7V 1.33+0.07 1.3840.07
B Ori B8Ia 2.57+£0.14 2.69£0.15
aCMa A1V 5.85+0.10 6.12+0.10
aLyr A0V 3.31£0.15 3.4740.16
aPsA A3V 1.88+0.13 2.09+0.14
aCar FOIb-II  6.48+0.39 6.86+0.41
alAql ATIV-V  2.79+0.14 2.97+0.15
aCMi F5IV-V  5.31+0.36 5.71+0.39

The radio range is the best suitable regime, and the first results were
obtained in that band — but not of course for thermal sources.
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